Hands-on Solar Energy: Exploring How Light Influence Solar Cell Performance in Junior High School Experiments
DOI:
https://doi.org/10.30599/jipfri.v8i2.3349Keywords:
Laboratory activity, Solar cell, ExperimentAbstract
This study explores the impact of light wavelength on solar cell performance through a hands-on laboratory experiment designed for junior high school students. The experiment utilized a spectrometer app to measure the dominant wavelengths of various visible light colors and assessed the corresponding voltage and current generated by a solar cell. Results indicated a clear inverse relationship between wavelength and solar cell output, with shorter wavelengths producing higher voltage and current values. For example, light with a wavelength of 400 nm resulted in the highest voltage (1.75 V) and current (13.9 µA), whereas light at 650 nm generated the lowest output (1.43 V and 8.7 µA). This experiment provides an accessible, cost-effective way for students to grasp the principles of solar energy and wavelength effects, enhancing their understanding of energy conversion in renewable technologies.
Downloads
References
Angjelina, P., Prima, E. C., Riandi, & Anwar, S. (2023). Design of a microcontroller-based hydrostatic pressure experiment tool in science education. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 12(1), 1–9. https://doi.org/10.24042/jipfalbiruni.v12i1.15177
Braaten, M., & Sheth, M. (2017). Tensions Teaching Science for Equity: Lessons Learned From the Case of Ms. Dawson. Science Education, 101(1), 134–164. https://doi.org/10.1002/sce.21254
Brecl, K., & Topič, M. (2011). Self-shading losses of fixed free-standing PV arrays. Renewable Energy, 36(11), 3211–3216. https://doi.org/10.1016/j.renene.2011.03.011
Dwiyanti, U., Setiabudi, A., & Prima, E. C. (2021). Investigation on Teachers’ Perception of Augmented Reality as Interactive Media for Science Learning. Jurnal Pendidikan MIPA, 22(2), 245–255. https://doi.org/10.23960/jpmipa/v22i2.pp245-255
Erinosho, S. Y. (2013). How Do Students Perceive the Difficulty of Physics in Secondary School? An Exploratory Study in Nigeria. International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), 3(3), 1510–1515. https://doi.org/10.1145/2212776.2223799
Fitri, S. F. N. (2021). Problematika Kualitas Pendidikan di Indonesia. Jurnal Pendidikan Tambusai, 5(1), 1617–1620.
Ghazi, S., & Ip, K. (2014). The effect of weather conditions on the efficiency of PV panels in the southeast of UK. Renewable Energy, 69, 50–59. https://doi.org/10.1016/j.renene.2014.03.018
Hamdani, S. A., Prima, E. C., Agustin, R. R., Feranie, S., & Sugiana, A. (2022). Development of Android-based Interactive Multimedia to Enhance Critical Thinking Skills in Learning Matters. Journal of Science Learning, 5(1), 103–114. https://doi.org/10.17509/jsl.v5i1.33998
Huang, X., Han, S., Huang, W., & Liu, X. (2013). Enhancing solar cell efficiency: The search for luminescent materials as spectral converters. Chemical Society Reviews, 42(1), 173–201. https://doi.org/10.1039/c2cs35288e
Isioma, E. M., Charity Ukpok-awaji, O., & Fabian Ifeanyichukwu, E. (2021). Building a Solar Panel for Electricity Generation in the Fabrication of Dye Sensitized Solar Cell. International Journal of Photochemistry and Photobiology, 5(1), 1. https://doi.org/10.11648/j.ijpp.20210501.11
Kartikay, P., Mokurala, K., Approaches, O., Tao, M., & Sun, W. (2021). Solar photovoltaic technology : A review of different types of solar cells and its future trends Solar photovoltaic technology : A review of different types of solar cells and its future trends. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1913/1/012053
Kibria, M. T., Ahammed, A., Sony, S. M., & Hossain, F. (2014). A Review : Comparative studies on different generation solar cells technology. International Conference on Environmental Aspects of Bangladesh, March, 51–53.
King, B. M., Rosopa, P. J., & Minium, E. W. (2018). Statistical Reasoning in The Behavioral Sciences (7th ed.). John Wiley & Sons, Inc.
Knezek, G., & Christensen, R. (2020). Project-based learning for middle school students monitoring standby power: replication of impact on stem knowledge and dispositions. Educational Technology Research and Development, 68(1), 137–162. https://doi.org/10.1007/s11423-019-09674-3
Kymakis, E., & Amaratunga, G. A. J. (2003). Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix. Solar Energy Materials and Solar Cells, 80(4), 465–472. https://doi.org/10.1016/j.solmat.2003.08.013
Lewerenz, H.-J. (2012). Photons in Natural and Life Sciences. Springer.
Nicolaidis, N. C., Hollott, P. V, Stanwell, B., Gill, I. A., Bull, J. E., Bentsen, S., Iredale, J., Pappenfus, T. M., Dastoor, P. C., Feron, K., Gri, M. J., & Holmes, N. P. (2020). Developing a Portable Organic Solar Cell Kit Suitable for Students to Fabricate and Test Solar Cells in the Laboratory. https://doi.org/10.1021/acs.jchemed.9b00941
Parthiban, R., & Ponnambalam, P. (2022). An Enhancement of the Solar Panel Efficiency: A Comprehensive Review. Frontiers in Energy Research, 10(July), 1–15. https://doi.org/10.3389/fenrg.2022.937155
Petrova-Koch, V. (2008). Milestones of Solar Conversion and Photovoltaics. High-Efficient Low-Cost Photovoltaics, 1–5. https://doi.org/10.1007/978-3-540-79359-5_1
Prangnell, L. (2016). Visible Light-Based Human Visual System Conceptual Model. http://arxiv.org/abs/1609.04830
Prima, E. C., Muntaz, A. Z. Y., Muslihah, F., Muharam, G. S. A., Kurniawan, L. A., Ulfi, M. F., & Saputra, W. T. (2023). A Low-Cost Diffraction-based Light Wavelength Measurement for Classroom Purposes. Jurnal Inovasi Dan Pembelajaran Fisika, 10(1), 57–62. https://doi.org/10.36706/jipf.v10i1.19690
Prima, E. C., Utari, S., Chandra, D. T., Hasanah, L., & Rusdiana, D. (2018). Heat and temperature experiment designs to support students’ conception on nature of science. Journal of Technology and Science Education, 8(4), 453–472. https://doi.org/10.3926/jotse.419
Qotrunnada, N. A. (2022). Analysis of the Difficulties of High School Students in Improving Problem Solving Ability in Physics Learning. International Journal of Current Educational Research, 1(1), 84–101. https://doi.org/10.53621/ijocer.v1i1.141
Ramadhani, I., & Tanjung, R. (2020). Identification of Learning Difficulties in Junior High School Physics in Langkat Regency. IPER (Indonesian Physics Education Research), 1(1), 53–60. https://doi.org/10.24114/iper.v1i1.21011
Rosyidah, T., Prima, E. C., & Riandi, R. (2023). Pemanfaatan Tangki Riak Untuk Mengukur Kecepatan Rambat Gelombang Permukaan Air. Silampari Jurnal Pendidikan Ilmu Fisika, 5(1), 76–87. https://doi.org/10.31540/sjpif.v5i1.2054
Salasnich, L. (2014). Quantum Physics of Light and Matter. Springer.
Sliney, D. H. (2016). What is light? the visible spectrum and beyond. Eye (Basingstoke), 30(2), 222–229. https://doi.org/10.1038/eye.2015.252
Suryawati, E., & Osman, K. (2018). Contextual learning: Innovative approach towards the development of students’ scientific attitude and natural science performance. Eurasia Journal of Mathematics, Science and Technology Education, 14(1), 61–76. https://doi.org/10.12973/ejmste/79329
Thomas, K. R., Horne, P. L., Donnelly, S. M., & Berube, C. T. (2013). Infusing Problem-Based Learning (PBL) Into Science Methods Courses Across Virginia. The Journal of Mathematics and Science: Collaborative Explorations, 13, 93–110.
Wangchuk, D., Wangdi, D., Tshomo, S., & Zangmo, J. (2023). Exploring Students’ Perceived Difficulties of Learning Physics. Educational Innovation and Practice, 6(2007), 1–11. https://doi.org/10.17102/eip.6.2023.03
Zhang, T., & Yang, H. (2018). High efficiency plants and building integrated renewable energy systems: Building-integrated photovoltaics (BIPV). In Handbook of Energy Efficiency in Buildings: A Life Cycle Approach. https://doi.org/10.1016/B978-0-12-812817-6.00040-1
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Naufal Rabah Wahidin, Eka Cahya Prima, Riandi Riandi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.