Pengaruh Ketebalan Lapisan Tipis ZnO terhadap Kinerja Sel Surya Perovskit Fleksibel


  • Putri Ekarani
  • Eka Cahya Prima Department of Science Education, FPMIPA UPI Bandung
  • Dadi Rusdiana Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia



Photoelectrode thickness, Perovskite solar cells, ZnO


Photoelectrode preparation that requires high heating temperatures will hinder the future development of PSCs on flexible plastic substrates. Therefore, ZnO is a viable alternative for flexible PSCs because it can be processed at low temperatures. This research focuses on the influence of ZnO photoelectrode layer thickness on the optical properties and performance of PSCs. The transmittance of ZnO thin films was found to be more than 50% in each sample. In addition, the bandgap obtained ranged from 3.12 to 3.20 eV. The efficiency results are 0.90×10-5% at a thickness of 10 µm, 1.09×10-5% at a thickness of 8 µm, 2.68×10-5% at a thickness of 6 µm, and the best efficiency is 4.31×10-5% at 4 µm thickness. Based on the results of research that has been carried out, reducing the thickness of the ZnO photoelectrode layer can increase the transmittance and efficiency of solar cells so that solar cell performance increases.


Download data is not yet available.


Ashrafi, S. S., Hossain, M. K., Islam, M. M., Hossain, M. U., Fahad, S. M., Kamrujjaman, M., Masum, M. M. I., Ahmed, F., Hossain, M. A., & Rahman, M. O. (2020). Characterization and Fabrication of Pb-Based Perovskites Solar Cells under Atmospheric Condition and Stability Enhancement. Advances in Materials Physics and Chemistry, 10(11), 282–296.

Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–319.

Butt, M. A. (2022). Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings, 12(8).

Chaves, F. A., & Jiménez, D. (2018). Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film. Nanotechnology, 29(27).

Cho, S.-H. (2009). Effects of Growth Temperature on the Properties of ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering. Transactions on Electrical and Electronic Materials, 10(6), 185–188.

Consonni, V., Briscoe, J., Kärber, E., Li, X., & Cossuet, T. (2019). ZnO nanowires for solar cells: A comprehensive review. Nanotechnology, 30(36).

Debanath, M. K., & Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119.

Haque, M. J., Bellah, M. M., Hassan, M. R., & Rahman, S. (2020). Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express, 1(1).

Hodes, G. (2013). Perovskite-based solar cells. Science, 342(6156), 317–318.

Hosseini, A., Içli, K., Özenbaş, M., & Erçelebi. (2014). Fabrication and characterization of spin-coated TiO2 films. Energy Procedia, 60(C), 191–198.

Jie Zhang. (2016). Roles of the n-type oxide layer in hybrid perovskite solar cells.

Klubnuan, S., Suwanboon, S., & Amornpitoksuk, P. (2016). Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Optical Materials, 53, 134–141.

Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic CH3 NH3 PbI 3 /TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 3.

L.C. Passos, M., & M.F.S. Saraiva, M. L. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement: Journal of the International Measurement Confederation, 135, 896–904.

Lee, W., Yeop, J., Heo, J., Yoon, Y. J., Park, S. Y., Jeong, J., Shin, Y. S., Kim, J. W., An, N. G., Kim, D. S., Park, J., & Kim, J. Y. (2020). High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 10(1), 1–10.

Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133–138.

Mäntele, W., & Deniz, E. (2017). UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 173, 965–968.

Minkov, D., Marquez, E., Angelov, G., Gavrilov, G., Ruano, S., & Saugar, E. (2021). Further increasing the accuracy of characterization of a thin dielectric or semiconductor film on a substrate from its interference transmittance spectrum. Materials, 14(16).

Pruna, R., Palacio, F., López, M., Pérez, J., Mir, M., Blázquez, O., Hernández, S., & Garrido, B. (2016). Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces. Applied Physics Letters, 109(6).

Rahman, A., Novyanto, O., Alfiyati, N., Sidik, A., Idris, I., & Nugraha, A. R. (2019). Design and Characterization of Spin Coater To Support National Semiconductor Industry. Jurnal Standardisasi, 21(3), 183.

Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application - A review. Renewable and Sustainable Energy Reviews, 60, 356–376.

Snaith, H. J. (2013). 2013_Physical Chemistry Letter_Perovskites The Emergence of a New Era for Low-Cost, HighEfficiency Solar Cells.pdf.

Tan, W. K., Lockman, Z., Abdul Razak, K., Kawamura, G., Muto, H., & Matsuda, A. (2013). Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction. International Journal of Energy Research, 33(4), n/a-n/a.

Wibowo, A., Marsudi, M. A., Amal, M. I., Ananda, M. B., Stephanie, R., Ardy, H., & Diguna, L. J. (2020). ZnO nanostructured materials for emerging solar cell applications. RSC Advances, 10(70), 42838–42859.

Wu, C. Y., Lee, Y. L., Lo, Y. S., Lin, C. J., & Wu, C. H. (2013). Thickness-dependent photocatalytic performance of nanocrystalline TiO 2 thin films prepared by sol-gel spin coating. Applied Surface Science, 280, 737–744.

Yang, D., Yang, R., Priya, S., & Liu, S. (Frank). (2019). Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 58(14), 4466–4483.

Zeng, P., Deng, W., & Liu, M. (2020). Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar RRL, 4(3).

Zhang, X. H., Ye, J. J., Zhu, L. Z., Zheng, H. Y., Liu, X. P., Pan, X., & Dai, S. Y. (2016). High Consistency Perovskite Solar Cell with a Consecutive Compact and Mesoporous TiO2 Film by One-Step Spin-Coating. ACS Applied Materials and Interfaces, 8(51), 35440–35446.




How to Cite

Ekarani, P., Prima, E. C., & Rusdiana, D. (2023). Pengaruh Ketebalan Lapisan Tipis ZnO terhadap Kinerja Sel Surya Perovskit Fleksibel. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 7(2), 46–55.
Abstract Views: 217 | File Views: 217