Pengaruh Ketebalan Lapisan Tipis ZnO terhadap Kinerja Sel Surya Perovskit Fleksibel
DOI:
https://doi.org/10.30599/jipfri.v7i2.2692Keywords:
Photoelectrode thickness, Perovskite solar cells, ZnOAbstract
Photoelectrode preparation that requires high heating temperatures will hinder the future development of PSCs on flexible plastic substrates. Therefore, ZnO is a viable alternative for flexible PSCs because it can be processed at low temperatures. This research focuses on the influence of ZnO photoelectrode layer thickness on the optical properties and performance of PSCs. The transmittance of ZnO thin films was found to be more than 50% in each sample. In addition, the bandgap obtained ranged from 3.12 to 3.20 eV. The efficiency results are 0.90×10-5% at a thickness of 10 µm, 1.09×10-5% at a thickness of 8 µm, 2.68×10-5% at a thickness of 6 µm, and the best efficiency is 4.31×10-5% at 4 µm thickness. Based on the results of research that has been carried out, reducing the thickness of the ZnO photoelectrode layer can increase the transmittance and efficiency of solar cells so that solar cell performance increases.
Downloads
References
Ashrafi, S. S., Hossain, M. K., Islam, M. M., Hossain, M. U., Fahad, S. M., Kamrujjaman, M., Masum, M. M. I., Ahmed, F., Hossain, M. A., & Rahman, M. O. (2020). Characterization and Fabrication of Pb-Based Perovskites Solar Cells under Atmospheric Condition and Stability Enhancement. Advances in Materials Physics and Chemistry, 10(11), 282–296. https://doi.org/10.4236/ampc.2020.1011022
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–319. https://doi.org/10.1038/nature12340
Butt, M. A. (2022). Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings, 12(8). https://doi.org/10.3390/coatings12081115
Chaves, F. A., & Jiménez, D. (2018). Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film. Nanotechnology, 29(27).
Cho, S.-H. (2009). Effects of Growth Temperature on the Properties of ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering. Transactions on Electrical and Electronic Materials, 10(6), 185–188. https://doi.org/10.4313/teem.2009.10.6.185
Consonni, V., Briscoe, J., Kärber, E., Li, X., & Cossuet, T. (2019). ZnO nanowires for solar cells: A comprehensive review. Nanotechnology, 30(36). https://doi.org/10.1088/1361-6528/ab1f2e
Debanath, M. K., & Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119. https://doi.org/10.1016/j.matlet.2013.08.069
Haque, M. J., Bellah, M. M., Hassan, M. R., & Rahman, S. (2020). Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express, 1(1). https://doi.org/10.1088/2632-959X/ab7a43
Hodes, G. (2013). Perovskite-based solar cells. Science, 342(6156), 317–318. https://doi.org/10.1126/science.1245473
Hosseini, A., Içli, K., Özenbaş, M., & Erçelebi. (2014). Fabrication and characterization of spin-coated TiO2 films. Energy Procedia, 60(C), 191–198. https://doi.org/10.1016/j.egypro.2014.12.332
Jie Zhang. (2016). Roles of the n-type oxide layer in hybrid perovskite solar cells.
Klubnuan, S., Suwanboon, S., & Amornpitoksuk, P. (2016). Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Optical Materials, 53, 134–141. https://doi.org/10.1016/j.optmat.2016.01.045
Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic CH3 NH3 PbI 3 /TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 3. https://doi.org/10.1038/srep03132
L.C. Passos, M., & M.F.S. Saraiva, M. L. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement: Journal of the International Measurement Confederation, 135, 896–904. https://doi.org/10.1016/j.measurement.2018.12.045
Lee, W., Yeop, J., Heo, J., Yoon, Y. J., Park, S. Y., Jeong, J., Shin, Y. S., Kim, J. W., An, N. G., Kim, D. S., Park, J., & Kim, J. Y. (2020). High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-75070-0
Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133–138. https://doi.org/10.1038/nphoton.2013.342
Mäntele, W., & Deniz, E. (2017). UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 173, 965–968. https://doi.org/10.1016/j.saa.2016.09.037
Minkov, D., Marquez, E., Angelov, G., Gavrilov, G., Ruano, S., & Saugar, E. (2021). Further increasing the accuracy of characterization of a thin dielectric or semiconductor film on a substrate from its interference transmittance spectrum. Materials, 14(16). https://doi.org/10.3390/ma14164681
Pruna, R., Palacio, F., López, M., Pérez, J., Mir, M., Blázquez, O., Hernández, S., & Garrido, B. (2016). Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces. Applied Physics Letters, 109(6). https://doi.org/10.1063/1.4960734
Rahman, A., Novyanto, O., Alfiyati, N., Sidik, A., Idris, I., & Nugraha, A. R. (2019). Design and Characterization of Spin Coater To Support National Semiconductor Industry. Jurnal Standardisasi, 21(3), 183. https://doi.org/10.31153/js.v21i3.761
Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application - A review. Renewable and Sustainable Energy Reviews, 60, 356–376. https://doi.org/10.1016/j.rser.2016.01.104
Snaith, H. J. (2013). 2013_Physical Chemistry Letter_Perovskites The Emergence of a New Era for Low-Cost, HighEfficiency Solar Cells.pdf.
Tan, W. K., Lockman, Z., Abdul Razak, K., Kawamura, G., Muto, H., & Matsuda, A. (2013). Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction. International Journal of Energy Research, 33(4), n/a-n/a. https://doi.org/10.1002/er.3026
Wibowo, A., Marsudi, M. A., Amal, M. I., Ananda, M. B., Stephanie, R., Ardy, H., & Diguna, L. J. (2020). ZnO nanostructured materials for emerging solar cell applications. RSC Advances, 10(70), 42838–42859. https://doi.org/10.1039/d0ra07689a
Wu, C. Y., Lee, Y. L., Lo, Y. S., Lin, C. J., & Wu, C. H. (2013). Thickness-dependent photocatalytic performance of nanocrystalline TiO 2 thin films prepared by sol-gel spin coating. Applied Surface Science, 280, 737–744. https://doi.org/10.1016/j.apsusc.2013.05.053
Yang, D., Yang, R., Priya, S., & Liu, S. (Frank). (2019). Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 58(14), 4466–4483. https://doi.org/10.1002/anie.201809781
Zeng, P., Deng, W., & Liu, M. (2020). Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar RRL, 4(3). https://doi.org/10.1002/solr.201900485
Zhang, X. H., Ye, J. J., Zhu, L. Z., Zheng, H. Y., Liu, X. P., Pan, X., & Dai, S. Y. (2016). High Consistency Perovskite Solar Cell with a Consecutive Compact and Mesoporous TiO2 Film by One-Step Spin-Coating. ACS Applied Materials and Interfaces, 8(51), 35440–35446. https://doi.org/10.1021/acsami.6b11860
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Putri Ekarani, Eka Cahya Prima, Dadi Rusdiana

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

