Pengaruh Ketebalan Lapisan Tipis ZnO terhadap Kinerja Sel Surya Perovskit Fleksibel

Authors

  • Putri Ekarani
  • Eka Cahya Prima Department of Science Education, FPMIPA UPI Bandung
  • Dadi Rusdiana Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia

DOI:

https://doi.org/10.30599/jipfri.v7i2.2692

Keywords:

Photoelectrode thickness, Perovskite solar cells, ZnO

Abstract

Photoelectrode preparation that requires high heating temperatures will hinder the future development of PSCs on flexible plastic substrates. Therefore, ZnO is a viable alternative for flexible PSCs because it can be processed at low temperatures. This research focuses on the influence of ZnO photoelectrode layer thickness on the optical properties and performance of PSCs. The transmittance of ZnO thin films was found to be more than 50% in each sample. In addition, the bandgap obtained ranged from 3.12 to 3.20 eV. The efficiency results are 0.90×10-5% at a thickness of 10 µm, 1.09×10-5% at a thickness of 8 µm, 2.68×10-5% at a thickness of 6 µm, and the best efficiency is 4.31×10-5% at 4 µm thickness. Based on the results of research that has been carried out, reducing the thickness of the ZnO photoelectrode layer can increase the transmittance and efficiency of solar cells so that solar cell performance increases.

Downloads

Download data is not yet available.

References

Ashrafi, S. S., Hossain, M. K., Islam, M. M., Hossain, M. U., Fahad, S. M., Kamrujjaman, M., Masum, M. M. I., Ahmed, F., Hossain, M. A., & Rahman, M. O. (2020). Characterization and Fabrication of Pb-Based Perovskites Solar Cells under Atmospheric Condition and Stability Enhancement. Advances in Materials Physics and Chemistry, 10(11), 282–296. https://doi.org/10.4236/ampc.2020.1011022

Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., & Grätzel, M. (2013). Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 499(7458), 316–319. https://doi.org/10.1038/nature12340

Butt, M. A. (2022). Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings, 12(8). https://doi.org/10.3390/coatings12081115

Chaves, F. A., & Jiménez, D. (2018). Thickness dependence of structural, optical and morphological properties of sol-gel derived TiO2 thin film. Nanotechnology, 29(27).

Cho, S.-H. (2009). Effects of Growth Temperature on the Properties of ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering. Transactions on Electrical and Electronic Materials, 10(6), 185–188. https://doi.org/10.4313/teem.2009.10.6.185

Consonni, V., Briscoe, J., Kärber, E., Li, X., & Cossuet, T. (2019). ZnO nanowires for solar cells: A comprehensive review. Nanotechnology, 30(36). https://doi.org/10.1088/1361-6528/ab1f2e

Debanath, M. K., & Karmakar, S. (2013). Study of blueshift of optical band gap in zinc oxide (ZnO) nanoparticles prepared by low-temperature wet chemical method. Materials Letters, 111, 116–119. https://doi.org/10.1016/j.matlet.2013.08.069

Haque, M. J., Bellah, M. M., Hassan, M. R., & Rahman, S. (2020). Synthesis of ZnO nanoparticles by two different methods & comparison of their structural, antibacterial, photocatalytic and optical properties. Nano Express, 1(1). https://doi.org/10.1088/2632-959X/ab7a43

Hodes, G. (2013). Perovskite-based solar cells. Science, 342(6156), 317–318. https://doi.org/10.1126/science.1245473

Hosseini, A., Içli, K., Özenbaş, M., & Erçelebi. (2014). Fabrication and characterization of spin-coated TiO2 films. Energy Procedia, 60(C), 191–198. https://doi.org/10.1016/j.egypro.2014.12.332

Jie Zhang. (2016). Roles of the n-type oxide layer in hybrid perovskite solar cells.

Klubnuan, S., Suwanboon, S., & Amornpitoksuk, P. (2016). Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method. Optical Materials, 53, 134–141. https://doi.org/10.1016/j.optmat.2016.01.045

Ku, Z., Rong, Y., Xu, M., Liu, T., & Han, H. (2013). Full printable processed mesoscopic CH3 NH3 PbI 3 /TiO2 heterojunction solar cells with carbon counter electrode. Scientific Reports, 3. https://doi.org/10.1038/srep03132

L.C. Passos, M., & M.F.S. Saraiva, M. L. (2019). Detection in UV-visible spectrophotometry: Detectors, detection systems, and detection strategies. Measurement: Journal of the International Measurement Confederation, 135, 896–904. https://doi.org/10.1016/j.measurement.2018.12.045

Lee, W., Yeop, J., Heo, J., Yoon, Y. J., Park, S. Y., Jeong, J., Shin, Y. S., Kim, J. W., An, N. G., Kim, D. S., Park, J., & Kim, J. Y. (2020). High colloidal stability ZnO nanoparticles independent on solvent polarity and their application in polymer solar cells. Scientific Reports, 10(1), 1–10. https://doi.org/10.1038/s41598-020-75070-0

Liu, D., & Kelly, T. L. (2014). Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nature Photonics, 8(2), 133–138. https://doi.org/10.1038/nphoton.2013.342

Mäntele, W., & Deniz, E. (2017). UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 173, 965–968. https://doi.org/10.1016/j.saa.2016.09.037

Minkov, D., Marquez, E., Angelov, G., Gavrilov, G., Ruano, S., & Saugar, E. (2021). Further increasing the accuracy of characterization of a thin dielectric or semiconductor film on a substrate from its interference transmittance spectrum. Materials, 14(16). https://doi.org/10.3390/ma14164681

Pruna, R., Palacio, F., López, M., Pérez, J., Mir, M., Blázquez, O., Hernández, S., & Garrido, B. (2016). Electrochemical characterization of organosilane-functionalized nanostructured ITO surfaces. Applied Physics Letters, 109(6). https://doi.org/10.1063/1.4960734

Rahman, A., Novyanto, O., Alfiyati, N., Sidik, A., Idris, I., & Nugraha, A. R. (2019). Design and Characterization of Spin Coater To Support National Semiconductor Industry. Jurnal Standardisasi, 21(3), 183. https://doi.org/10.31153/js.v21i3.761

Sengupta, D., Das, P., Mondal, B., & Mukherjee, K. (2016). Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application - A review. Renewable and Sustainable Energy Reviews, 60, 356–376. https://doi.org/10.1016/j.rser.2016.01.104

Snaith, H. J. (2013). 2013_Physical Chemistry Letter_Perovskites The Emergence of a New Era for Low-Cost, HighEfficiency Solar Cells.pdf.

Tan, W. K., Lockman, Z., Abdul Razak, K., Kawamura, G., Muto, H., & Matsuda, A. (2013). Enhanced dye-sensitized solar cells performance of ZnO nanorod arrays grown by low-temperature hydrothermal reaction. International Journal of Energy Research, 33(4), n/a-n/a. https://doi.org/10.1002/er.3026

Wibowo, A., Marsudi, M. A., Amal, M. I., Ananda, M. B., Stephanie, R., Ardy, H., & Diguna, L. J. (2020). ZnO nanostructured materials for emerging solar cell applications. RSC Advances, 10(70), 42838–42859. https://doi.org/10.1039/d0ra07689a

Wu, C. Y., Lee, Y. L., Lo, Y. S., Lin, C. J., & Wu, C. H. (2013). Thickness-dependent photocatalytic performance of nanocrystalline TiO 2 thin films prepared by sol-gel spin coating. Applied Surface Science, 280, 737–744. https://doi.org/10.1016/j.apsusc.2013.05.053

Yang, D., Yang, R., Priya, S., & Liu, S. (Frank). (2019). Recent Advances in Flexible Perovskite Solar Cells: Fabrication and Applications. Angewandte Chemie - International Edition, 58(14), 4466–4483. https://doi.org/10.1002/anie.201809781

Zeng, P., Deng, W., & Liu, M. (2020). Recent Advances of Device Components toward Efficient Flexible Perovskite Solar Cells. Solar RRL, 4(3). https://doi.org/10.1002/solr.201900485

Zhang, X. H., Ye, J. J., Zhu, L. Z., Zheng, H. Y., Liu, X. P., Pan, X., & Dai, S. Y. (2016). High Consistency Perovskite Solar Cell with a Consecutive Compact and Mesoporous TiO2 Film by One-Step Spin-Coating. ACS Applied Materials and Interfaces, 8(51), 35440–35446. https://doi.org/10.1021/acsami.6b11860

Downloads

Published

2023-11-18

How to Cite

Ekarani, P., Prima, E. C., & Rusdiana, D. (2023). Pengaruh Ketebalan Lapisan Tipis ZnO terhadap Kinerja Sel Surya Perovskit Fleksibel. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 7(2), 46–55. https://doi.org/10.30599/jipfri.v7i2.2692
Abstract Views: 217 | File Views: 217