Review Metode Deposisi Elektrokimia Cu2ZnSnS4 sebagai Lapisan Absorber Sel Surya Lapisan Tipis

Authors

  • Husna Hanifa Solar Energy Materials Laboratory, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Eka Cahya Prima Department of Science Education, FPMIPA UPI Bandung
  • Endi Suhendi Solar Energy Materials Laboratory, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia

DOI:

https://doi.org/10.30599/jipfri.v8i1.1766

Keywords:

Cu2ZnSnS4, Electrochemical Deposition, Solar Cell

Abstract

Cu2ZnSnS4 is a low-cost and environmentally friendly thin layer solar cell absorber material. The electrochemical deposition method is intended to study because it enables producing films with high homogeneity based on solution precursors. This research review focuses on examining the CZTS electrochemical deposition method in order to identify the effect of the sulfurization process (sulfurization temperature and time) so that the best electrochemical deposition process can be identified for future work of high-efficiency CZTS thin layer solar cell fabrication based on solution precursor. The results show that the Cu2ZnSnS4 layer deposited through the electrochemical method has a 1.4-1.6 eV bandgap range. The etching process to post-annealing 0.1M KCN is crucial to effectively and selectively remove CuS, ZnS, and Cu6Sn5 secondary phases.

Downloads

Download data is not yet available.

References

Abdelhaleem, S., Hassanien, A. E., Ahmad, R., Schuster, M., Ashour, A. H., Distaso, M., . . . Wellmann, P. J. (2018). Tuning the Properties of CZTS Films by Controlling the Process Parameters in Cost-Effective Non-vacuum Technique. Journal of Electronic Materials, 47(12), 7085-7092. doi:10.1007/s11664-018-6636-4

Ahmoum, H., Chelvanathan, P., Su'ait, M., Boughrara, M., Li, G., Al-Waeli, A. H., . . . Amin, N. (2020). Impact of preheating environment on microstructural and optoelectronic properties of Cu2ZnSnS4 (CZTS) thin films deposited by spin-coating. Superlattices and Microstructures, 140, 106452.

Akhavan, V. A., Goodfellow, B. W., Panthani, M. G., Steinhagen, C., Harvey, T. B., Stolle, C. J., & Korgel, B. A. (2012). Colloidal CIGS and CZTS nanocrystals: A precursor route to printed photovoltaics. Journal of Solid State Chemistry, 189, 2-12.

Aldalbahi, A., Mkawi, E., Ibrahim, K., & Farrukh, M. (2016a). Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition. Scientific Reports, 6(1), 1-9.

Aldalbahi, A., Mkawi, E., Ibrahim, K., & Farrukh, M. (2016b). Effect of sulfurization time on the properties of copper zinc tin sulfide thin films grown by electrochemical deposition. Scientific Reports, 6, 32431.

Aono, M., Yoshitake, K., & Miyazaki, H. (2013). XPS depth profile study of CZTS thin films prepared by spray pyrolysis. physica status solidi c, 10(7‐8), 1058-1061.

Bakr, N. A., Khodair, Z. T., & Mahdi, H. I. (2016). Influence of thiourea concentration on some physical properties of chemically sprayed Cu2ZnSnS4 thin films. International Journal of Materials Science and Applications, 5(6), 261-270.

Bayusari, I., Caroline, C., Hermawati, H., & Mawarni, L. (2023). Desain Prototipe Pembangkit Listrik Tenaga Surya Untuk Sumber Energi Alternatif Pada Mesin Sterilisasi Alat Medis Portable. Jurnal Rekayasa Elektro Sriwijaya, 4(2), 73-82.

Bhosale, S., Suryawanshi, M., Kim, J., & Moholkar, A. (2015). Influence of copper concentration on sprayed CZTS thin films deposited at high temperature. Ceramics International, 41(7), 8299-8304.

Boudaira, R., Meglali, O., Bouraiou, A., Attaf, N., Sedrati, C., & Aida, M. (2020). Optimization of sulphurization temperature for the production of single-phase CZTS kesterite layers synthesized by electrodeposition. Surface Engineering, 36(9), 1000-1011.

Buwarda, S. (2019). AZTS dengan Metode Sol-Gel sebagai Lapisan Buffer Bebas Cadmium pada Sel Surya CZTS. Jurnal Keteknikan dan Sains (JUTEKS), 2(1), 1-7.

Chapin, D. M., Fuller, C., & Pearson, G. (1954). A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics, 25(5), 676-677.

Chen, C.-H., Shih, W.-C., Chien, C.-Y., Hsu, C.-H., Wu, Y.-H., & Lai, C.-H. (2012). A promising sputtering route for one-step fabrication of chalcopyrite phase Cu (In, Ga) Se2 absorbers without extra Se supply. Solar Energy Materials and Solar Cells, 103, 25-29.

Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., . . . Tiwari, A. N. (2013). Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12(12), 1107-1111. doi:10.1038/nmat3789

Das, S., Frye, C., Muzykov, P. G., & Mandal, K. C. (2012). Deposition and characterization of low-cost spray pyrolyzed Cu2ZnSnS4 (CZTS) thin-films for large-area high-efficiency heterojunction solar cells. ECS Transactions, 45(7), 153.

Dharmadasa, I., Burton, R., & Simmonds, M. (2006). Electrodeposition of CuInSe2 layers using a two-electrode system for applications in multi-layer graded bandgap solar cells. Solar Energy Materials and Solar Cells, 90(15), 2191-2200.

Echendu, O. K., & Dharmadasa, I. M. (2015). Graded-bandgap solar cells using all-electrodeposited ZnS, CdS and CdTe thin-films. Energies, 8(5), 4416-4435.

Fthenakis, V. M. (2004). Life cycle impact analysis of cadmium in CdTe PV production. Renewable and Sustainable Energy Reviews, 8(4), 303-334.

Fthenakis, V., Athias, C., Blumenthal, A., Kulur, A., Magliozzo, J., & Ng, D. (2020). Sustainability evaluation of CdTe PV: An update. Renewable and Sustainable Energy Reviews, 123, 109776.

Gautam, M., Shi, Z., & Jayatissa, A. H. (2017). Graphene films as transparent electrodes for photovoltaic devices based on cadmium sulfide thin films. Solar Energy Materials and Solar Cells, 163, 1-8.

Ghediya, P. R., & Chaudhuri, T. K. (2015a). Dark and photo-conductivity of doctor-bladed CZTS films above room temperature. Journal of Physics D: Applied Physics, 48(45), 455109.

Ghediya, P. R., & Chaudhuri, T. K. (2015b). Doctor-blade printing of Cu 2 ZnSnS 4 films from microwave-processed ink. Journal of Materials Science: Materials in Electronics, 26(3), 1908-1912.

Gloeckler, M., & Sites, J. (2005). Efficiency limitations for wide-band-gap chalcopyrite solar cells. Thin Solid Films, 480, 241-245.

Gong, J., Liang, J., & Sumathy, K. (2012). Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials. Renewable and Sustainable Energy Reviews, 16(8), 5848-5860.

Guo, Q., Ford, G. M., Yang, W.-C., Walker, B. C., Stach, E. A., Hillhouse, H. W., & Agrawal, R. (2010). Fabrication of 7.2% Efficient CZTSSe Solar Cells Using CZTS Nanocrystals. Journal of the American Chemical Society, 132(49), 17384-17386. doi:10.1021/ja108427b

Han, S.-H., Hasoon, F. S., Pankow, J. W., Hermann, A. M., & Levi, D. H. (2005). Effect of Cu deficiency on the optical bowing of chalcopyrite Cu In 1− x Ga x Se 2. Applied Physics Letters, 87(15), 151904.

Hara, K., Arakawa, H., Luque, A., & Hegedus, S. (2003). Dye-sensitized Solar Cells, dalam Handbook of Photovoltaic Science and Engineering, (pp. 692-699). England: Wiley.

Hassanien, A., Abdelhaleem, S., Ahmad, R., Schuster, M., Moustafa, S., Distaso, M., . . . Wellmann, P. (2019). Effect of Fast Annealing on Structural Characteristics and Optical Properties of Cu2ZnSnS4 Absorber Films Deposited by Doctor-Blade Technique. Journal of Nanoelectronics and Optoelectronics, 14(10), 1394-1400.

Hidayanti, F. (2021). Aplikasi Sel Surya: Sistem Sel Surya Wearable.

Kahraman, S., Çetinkaya, S., Çetinkara, H., & Güder, H. (2014). A comparative study of Cu2ZnSnS4 thin films growth by successive ionic layer adsorption–reaction and sol-gel methods. Thin Solid Films, 550, 36-39.

Kamoun, N., Bouzouita, H., & Rezig, B. (2007). Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Thin Solid Films, 515(15), 5949-5952.

Karbassi, M., Baghshahi, S., Riahi-Noori, N., & Moakhar, R. S. (2020). Deposition of Cu2ZnSnS4 films by doctor blade printing using a one-step microwave heated ink as an absorber layer for solar cells. Ceramics International, 46(2), 2325-2331.

Katagiri, H., Jimbo, K., Maw, W. S., Oishi, K., Yamazaki, M., Araki, H., & Takeuchi, A. (2009). Development of CZTS-based thin film solar cells. Thin Solid Films, 517(7), 2455-2460.

Kato, T. (2017). Cu(In,Ga)(Se,S)2solar cell research in Solar Frontier: Progress and current status. Japanese Journal of Applied Physics, 56(4S), 04CA02. doi:10.7567/jjap.56.04ca02

Kaza, J., Pasumarthi, M. R., & P.S, A. (2020). Superstrate and substrate thin film configuration of CdS/CZTS solar cell fabricated using SILAR method. Optics & Laser Technology, 131, 106413. doi:https://doi.org/10.1016/j.optlastec.2020.106413

Khattak, Y. H., Baig, F., Toura, H., Harabi, I., Beg, S., & Soucase, B. M. (2019). Single step electrochemical deposition for the fabrication of CZTS kesterite thin films for solar cells. Applied Surface Science, 497, 143794.

Kumar, Y. K., Bhaskar, P. U., Babu, G. S., & Raja, V. S. (2010). Effect of copper salt and thiourea concentrations on the formation of Cu2ZnSnS4 thin films by spray pyrolysis. physica status solidi (a), 207(1), 149-156.

Larramona, G., Levcenko, S., Bourdais, S., Jacob, A., Choné, C., Delatouche, B., . . . Dennler, G. (2015). Fine-Tuning the Sn Content in CZTSSe Thin Films to Achieve 10.8% Solar Cell Efficiency from Spray-Deposited Water–Ethanol-Based Colloidal Inks. Advanced Energy Materials, 5(24), 1501404. doi:https://doi.org/10.1002/aenm.201501404

Lee, K. D., Seo, S.-W., Lee, D.-K., Kim, H., Jeong, J.-H., Ko, M. J., . . . Kim, J. Y. (2013). Preparation of Cu2ZnSnS4 thin films via electrochemical deposition and rapid thermal annealing. Thin Solid Films, 546, 294-298.

Li, W., Tan, J. M. R., Leow, S. W., Lie, S., Magdassi, S., & Wong, L. H. (2018). Recent Progress in Solution-Processed Copper-Chalcogenide Thin-Film Solar Cells. Energy Technology, 6(1), 46-59. doi:https://doi.org/10.1002/ente.201700734

Li, W., Li, W., Feng, Y., & Yang, C. (2019). Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells. Solar energy, 180, 207-215.

Litvinenko, S. V., Kozinetz, A. V., & Skryshevsky, V. A. (2015). Concept of photovoltaic transducer on a base of modified p–n junction solar cell. Sensors and Actuators A: Physical, 224, 30-35.

Liu, B., Guo, J., Hao, R., Wang, L., Gu, K., Sun, S., & Aierken, A. (2020). Effect of Na doping on the performance and the band alignment of CZTS/CdS thin film solar cell. Solar Energy, 201, 219-226.

Ma, C., Lu, X., Xu, B., Zhao, F., An, X., Li, B., . . . Chu, J. (2020). Effect of CZTS/CdS interfaces deposited with sputtering and CBD methods on Voc deficit and efficiency of CZTS solar cells. Journal of Alloys and Compounds, 817, 153329. doi:https://doi.org/10.1016/j.jallcom.2019.153329

Mondal, S. P., & Ray, S. K. (2012). Cadmium sulfide nanostructures for photovoltaic devices. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 82, 21-29.

Moriya, K., Tanaka, K., & Uchiki, H. (2007). Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition. Japanese Journal of Applied Physics, 46(9R), 5780.

Namnuan, B., Amornkitbamrung, V., & Chatraphorn, S. (2019). Effects of Cu (In, Ga) 3Se5 defect phase layer in Cu (In, Ga) Se2 thin film solar cells. Journal of Alloys and Compounds, 800, 305-313.

Namnuan, B. (2018). Effect of Cu (In, Ga)? Se? ultra-thin layer on optical properties and photovoltaic efficiency of Cu (In, Ga) Se? thin film solar cells.

Nugroho, H., Refantero, G., Prima, E., Panatarani, C., Nugraha, N., & Yuliarto, B. (2021). Crystal structure and optical properties of non-vacuum solution-based processed Cu2ZnSnS4 (CZTS) thin-film. Paper presented at the IOP Conference Series: Materials Science and Engineering.

Nugroho, H. S., Refantero, G., Prima, E. C., Panatarani, C., Suyatman, Nugraha, N., & Yuliarto, B. (2021). Crystal structure and optical properties of non-vacuum solution-based processed Cu2ZnSnS4 (CZTS) thin-film. IOP Conference Series: Materials Science and Engineering, 1045(1), 012039. doi:10.1088/1757-899x/1045/1/012039

O'Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740.

Patel, S., & Gohel, J. (2017). Effect of type of solvent on the sol-gel spin coated CZTS thin films. Phys Astron Int J, 1(4), 00023.

Patel, S. B., & Gohel, J. V. (2018). Optimization of sol–gel spin-coated Cu 2 ZnSnS 4 (CZTS) thin-film control parameters by RSM method to enhance the solar cell performance. Journal of Materials Science, 53(17), 12203-12213.

Qin-Miao, C., Zhen-Qing, L., Yi, N., Shu-Yi, C., & Xiao-Ming, D. (2012). Doctor-bladed Cu2ZnSnS4 light absorption layer for low-cost solar cell application. Chinese Physics B, 21(3), 038401.

Rana, M. S., Islam, M. M., & Julkarnain, M. (2021). Enhancement in efficiency of CZTS solar cell by using CZTSe BSF layer. Solar Energy, 226, 272-287.

Refantero, G., Prima, E. C., Setiawan, A., Panatarani, C., Cahyadi, D., & Yuliarto, B. (2020). Etching process optimization of non-vacuum fabricated Cu2ZnSnS4 solar cell. Journal of Materials Science: Materials in Electronics, 31(4), 3674-3680. doi:10.1007/s10854-020-02925-7

Reynolds, D. C., Leies, G., Antes, L. L., & Marburger, R. E. (1954). Photovoltaic Effect in Cadmium Sulfide. Physical Review, 96(2), 533-534. doi:10.1103/PhysRev.96.533

Satale, V. V., & Bhat, S. V. (2020). Superstrate type CZTS solar cell with all solution processed functional layers at low temperature. Solar Energy, 208, 220-226. doi:https://doi.org/10.1016/j.solener.2020.07.055

Sawant, J. P., & Kale, R. B. (2020). Surfactant mediated TiO2 photoanodes and Cu2ZnSnS4 counter electrodes for high efficient dye sensitized solar cells. Materials Letters, 265, 127407. doi:https://doi.org/10.1016/j.matlet.2020.127407

Seboui, Z., Cuminal, Y., & Kamoun-Turki, N. (2013). Physical properties of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique. Journal of renewable and Sustainable Energy, 5(2), 023113.

Siebentritt, S. (2013). Why are kesterite solar cells not 20% efficient? Thin Solid Films, 535, 1-4. doi:https://doi.org/10.1016/j.tsf.2012.12.089

Stathatos, E., Lianos, P., Zakeeruddin, S. M., Liska, P., & Grätzel, M. (2003). A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol−Gel Nanocomposite Electrolyte Containing Ionic Liquid. Chemistry of Materials, 15(9), 1825-1829. doi:10.1021/cm0213568

Sun, L., He, J., Chen, Y., Yue, F., Yang, P., & Chu, J. (2012). Comparative study on Cu2ZnSnS4 thin films deposited by sputtering and pulsed laser deposition from a single quaternary sulfide target. Journal of Crystal Growth, 361, 147-151.

Sunny, G., & Vijayakumar, K. (2019). Copper tin sulfide thin film through chemical spray pyrolysis material characterization and trials on device fabrication. Cochin University of Science and Technology.

Suryawanshi, M. P., Agawane, G. L., Bhosale, S. M., Shin, S. W., Patil, P. S., Kim, J. H., & Moholkar, A. V. (2013). CZTS based thin film solar cells: a status review. Materials Technology, 28(1-2), 98-109.

Tambunan, H. B. (2020). Sistem Pembangkit Listrik Tenaga Surya. Deepublish.

Tanaka, T., Nagatomo, T., Kawasaki, D., Nishio, M., Guo, Q., Wakahara, A., . . . Ogawa, H. (2005). Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. Journal of Physics and Chemistry of Solids, 66(11), 1978-1981.

Thomas, S. R., Chen, C.-W., Date, M., Wang, Y.-C., Tsai, H.-W., Wang, Z. M., & Chueh, Y.-L. (2016). Recent developments in the synthesis of nanostructured chalcopyrite materials and their applications: a review. RSC Advances, 6(65), 60643-60656.

Toura, H., Khattak, Y. H., Baig, F., Soucase, B. M., Touhami, M. E., & Hartiti, B. (2019). Effect of complexing agent on the morphology and annealing temperature of CZTS kesterite thin films by electrochemical deposition. Current Applied Physics, 19(5), 606-613.

Tryba, B., Tygielska, M., Colbeau-Justin, C., Kusiak-Nejman, E., Kapica-Kozar, J., Wróbel, R., . . . Guskos, N. (2016). Influence of pH of sol-gel solution on phase composition and photocatalytic activity of TiO2 under UV and visible light. Materials Research Bulletin, 84, 152-161.

Unveroglu, B., & Zangari, G. (2016). Towards phase pure kesterite CZTS films via Cu-Zn-Sn electrodeposition followed by sulfurization. Electrochimica Acta, 219, 664-672.

Vanalakar, S. A., Agawane, G. L., Shin, S. W., Suryawanshi, M. P., Gurav, K. V., Jeon, K. S., ... & Kim, J. H. (2015). A review on pulsed laser deposited CZTS thin films for solar cell applications. Journal of Alloys and Compounds, 619, 109-121.

Vellini, M., Gambini, M., & Prattella, V. (2017). Environmental impacts of PV technology throughout the life cycle: Importance of the end-of-life management for Si-panels and CdTe-panels. Energy, 138, 1099-1111.

Wang, J., Zhang, P., Song, X., & Gao, L. (2014). Cu 2 ZnSnS 4 thin films: spin coating synthesis and photoelectrochemistry. RSC Advances, 4(41), 21318-21324.

Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., & Mitzi, D. B. (2014). Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency. Advanced Energy Materials, 4(7), 1301465.

Yin, X., Xue, Z., Wang, L., Cheng, Y., & Liu, B. (2012). High-performance plastic dye-sensitized solar cells based on low-cost commercial P25 TiO2 and organic dye. ACS applied materials & interfaces, 4(3), 1709-1715.

Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., . . . Uzu, H. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5), 1-8.

Ziti, A., Hartiti, B., Labrim, H., Fadili, S., Ridah, A., Belhorma, B., . . . Thevenin, P. (2019). Study of kesterite CZTS thin films deposited by spin coating technique for photovoltaic applications. Superlattices and Microstructures, 127, 191-200.

Zhang, J., Yuan, X., Si, M., Jiang, L., & Yu, H. (2020). Core-shell structured cadmium sulfide nanocomposites for solar energy utilization. Advances in Colloid and Interface Science, 282, 102209.

Zhou, H., Cheng, S., Zhao, P., Yu, J., & Jia, H. (2017). Characterisation and properties of Cu2ZnSnS4 thin films synthesised by sputtering from an alloy target. Materials Research Innovations, 21(2), 97-101.

Downloads

Published

2024-05-31

How to Cite

Hanifa, H., Prima, E. C., & Suhendi, E. (2024). Review Metode Deposisi Elektrokimia Cu2ZnSnS4 sebagai Lapisan Absorber Sel Surya Lapisan Tipis . JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 8(1), 39–50. https://doi.org/10.30599/jipfri.v8i1.1766

Issue

Section

Articles
Abstract Views: 12 | File Views: 14