Review Penggunaan Reduced Graphene Oxide/TiO2 sebagai Fotoelektrode pada Dye-Sensitized Solar Cell


  • Eka Cahya Prima Department of Science Education, FPMIPA UPI Bandung
  • Meilisyah Putri Utami Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Andhy Setiawan Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Endi Suhendi Solar Energy Materials Laboratory, Faculty of Mathematics and Science Education, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia



Dye-sensitized Solar Cell, Pigment, Graphene


Many studies on graphene applied to DSSC have been carried out with the aim of increasing the efficiency of power conversion in organic solar cells. This research was conducted to find the best composition of soar cells so that they can be utilized and converted into electrical energy. The use of graphene as a photoanode can increase the conversion efficiency along with good electrical conductivity values in graphene. This review aims to analyze the process of increasing power conversion efficiency in DSSC caused by the addition of graphene to TiO2 which acts as a photoanode in DSSC during the last five years. The results of the measurement of DSSC efficiency increased when the addition of reduced graphene oxide to TiO2 was carried out.


Download data is not yet available.


A. M. Al-Alwani, M., Al-Mashaan, A. B. S. A., & Abdullah, M. F. (2019). Performance of the dye-sensitized solar cells fabricated using natural dyes from Ixora coccinea flowers and Cymbopogon schoenanthus leaves as sensitizers. International Journal of Energy Research, 43(13).

A.M. Al-Alwani, M., Abu Hasan, H., Kaid Nasser Al-Shorgani, N., & S.A. Al-Mashaan, A. B. (2020). Natural dye extracted from Areca catechu fruits as a new sensitiser for dye-sensitised solar cell fabrication: Optimisation using D-Optimal design. Materials Chemistry and Physics, 240, 122204.

Adhyaksa, G. W. P., Prima, E. C., Lee, D. K., Ock, I., Yatman, S., Yuliarto, B., & Kang, J. K. (2014). A light harvesting antenna using natural extract graminoids coupled with plasmonic metal nanoparticles for bio-photovoltaic cells. Adv. Energy Mater., 4(18), 1400470.

Al-Ghamdi, A. A., Gupta, R., Kahol, P., Wageh, S., Al-Turki, Y., El Shirbeeny, W., & Yakuphanoglu, F. (2014). Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell. Solid State Communications, 183, 56-59.

Alami, A. H., Aokal, K., Zhang, D., Taieb, A., Faraj, M., Alhammadi, A., . . . Irimia-Vladu, M. (2019). Low-cost dye-sensitized solar cells with ball-milled tellurium-doped graphene as counter electrodes and a natural sensitizer dye. International Journal of Energy Research, 43(11), 5824-5833.

Ananth, S., Arumanayagam, T., Vivek, P., & Murugakoothan, P. (2014). Direct synthesis of natural dye mixed titanium dioxide nano particles by sol–gel method for dye sensitized solar cell applications. Optik - International Journal for Light and Electron Optics, 125(1), 495-498.

Bella, F., Gerbaldi, C., Barolo, C., & Gratzel, M. (2015). Aqueous dye-sensitized solar cells. Chemical Society Reviews, 44(11), 3431-3473. doi:10.1039/C4CS00456F

Bisquert, J., & Compte, A. (2001). Theory of the electrochemical impedance of anomalous diffusion. J. Electroanal. Chem., 499(1), 112-120.

Cahya Prima, E., Yuliarto, B., & Kresno Dipojono, H. (2015). Theoretical investigation of anthocyanidin aglycones as photosensitizers for dye-sensitized tio2 solar cells. Adv. Mat. Res., 1112, 317-320.

Calogero, G., Bartolotta, A., Di Marco, G., Di Carlo, A., & Bonaccorso, F. (2015). Vegetable-based dye-sensitized solar cells. Chem. Soc. Rev., 44(10), 3244-3294.

Chang, B. Y. S. (2013). Synthesis and characterization of reduced graphene oxide/TiO2 nanocomposites as high performance photocatalyst/Betty Chang Yea Sze. University of Malaya.

Chong, S. W., Lai, C. W., Juan, J. C., & Leo, B. F. (2019). An investigation on surface modified TiO2 incorporated with graphene oxide for dye-sensitized solar cell. Solar Energy, 191, 663-671.

Cole, J. M., Pepe, G., Al Bahri, O. K., & Cooper, C. B. (2019). Cosensitization in Dye-Sensitized Solar Cells. Chemical Reviews, 119(12), 7279-7327.

Derenne, A., Van Hemelryck, V., Lamoral-Theys, D., Kiss, R., & Goormaghtigh, E. (2013). FTIR spectroscopy: A new valuable tool to classify the effects of polyphenolic compounds on cancer cells. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(1), 46-56.

Deshmukh, S. P., Kale, D. P., Kar, S., Shirsath, S. R., Bhanvase, B. A., Saharan, V. K., & Sonawane, S. H. (2020). Ultrasound assisted preparation of rGO/TiO2 nanocomposite for effective photocatalytic degradation of methylene blue under sunlight. Nano-Structures & Nano-Objects, 21, 100407.

Ding, H., Zhang, S., Chen, J.-T., Hu, X.-P., Du, Z.-F., Qiu, Y.-X., & Zhao, D.-L. (2015). Reduction of graphene oxide at room temperature with vitamin C for RGO–TiO2 photoanodes in dye-sensitized solar cell. Thin Solid Films, 584, 29-36.

Furukawa, S., Iino, H., Iwamoto, T., Kukita, K., & Yamauchi, S. (2009). Characteristics of dye-sensitized solar cells using natural dye. Thin Solid Films, 518(2), 526-529.

Griffiths, P., & de Hasseth, J. A. (2007). Fourier Transform Infrared Spectrometry (2nd ed.). New Jersey: Wiley.

Hemmatzadeh, R., & Mohammadi, A. (2013). Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells. Journal of Theoretical and Applied Physics, 7(1), 1-7.

Jambure, S. B., Gund, G. S., Dubal, D. P., Shinde, S. S., & Lokhande, C. D. (2014). Cost effective facile synthesis of TiO2 nanograins for flexible DSSC application using rose bengal dye. Electronic Materials Letters, 10(5), 943-950.

Jantasee, A., Thumanu, K., Muangsan, N., Leeanansaksiri, W., & Maensiri, D. (2014). Fourier Transform Infrared Spectroscopy for Antioxidant Capacity Determination in Colored Glutinous Rice. Food Anal. Methods, 7(2), 389-399.

Kazmi, S. A., Hameed, S., Ahmed, A. S., Arshad, M., & Azam, A. (2017). Electrical and optical properties of graphene-TiO2 nanocomposite and its applications in dye sensitized solar cells (DSSC). Journal of Alloys and Compounds, 691, 659-665.

Low, F. W., & Lai, C. W. (2019). Reduced graphene oxide decorated TiO2 for improving dye-sensitized solar cells (DSSCs). Current Nanoscience, 15(6), 631-636.

Maiaugree, W., Lowpa, S., Towannang, M., Rutphonsan, P., Tangtrakarn, A., Pimanpang, S., . . . Amornkitbamrung, V. (2015). A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste. Scientific Reports, 5, 15230. doi:10.1038/srep15230

Mohamad, A. A. (2016). Absorbency and conductivity of quasi-solid-state polymer electrolytes for dye-sensitized solar cells: A characterization review. Journal of Power Sources, 329, 57-71.

Nasr, M., Balme, S., Eid, C., Habchi, R., Miele, P., & Bechelany, M. (2017). Enhanced visible-light photocatalytic performance of electrospun rGO/TiO2 composite nanofibers. The Journal of Physical Chemistry C, 121(1), 261-269.

Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Mueller, E., Liska, P., . . . Graetzel, M. (1993). Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115(14), 6382-6390.

Prima, E., Nuruddin, A., Yuliarto, B., Kawamura, G., & Matsuda, A. (2018). Combined spectroscopic and TDDFT study of single-double anthocyanins for application in dye-sensitized solar cells. New Journal of Chemistry, 42(14), 11616-11628.

Prima, E. C., Hidayat, N. N., Yuliarto, B., Suyatman, & Dipojono, H. K. (2017). A combined spectroscopic and TDDFT study of natural dyes extracted from fruit peels of Citrus reticulata and Musa acuminata for dye-sensitized solar cells. Spectrochim. Acta Mol. Biomol. Spectrosc., 171, 112-125.

Prima, E. C., Nugroho, H. S., Nugraha, Refantero, G., Panatarani, C., & Yuliarto, B. (2020). Performance of the dye-sensitized quasi-solid state solar cell with combined anthocyanin-ruthenium photosensitizer. RSC Advances, 10(60), 36873-36886.

Prima, E. C., Yuliarto, B., Suyatman, & Dipojono, H. K. (2015). Ground and excited state properties of high performance anthocyanidin dyes-sensitized solar cells in the basic solutions. AIP Conf. Proc., 1677, 120002.

Prima, E. C., Yuliarto, B., Suyatman, & Dipojono, H. K. (2017). Donor-Modified Anthocyanin Dye-Sensitized Solar Cell with TiO2 Nanoparticles: Density Functional Theory Investigation Mater. Sci. Forum, 889, 178-183.

Qibtiya, M. A., Prima, E. C., Yuliarto, B., & Suyatman. (2016). pH Influences on optical absorption of Anthocyanin from Black Rice as Sensitizer for Dye Sensitized Solar Cell TiO2 Nanoparticles. Materials Science Forum, 864, 154-158.

San Esteban, A. C. M., & Enriquez, E. P. (2013). Graphene–anthocyanin mixture as photosensitizer for dye-sensitized solar cell. Solar Energy, 98, 392-399.

Sawant, J. P., & Kale, R. B. (2020). Surfactant mediated TiO2 photoanodes and Cu2ZnSnS4 counter electrodes for high efficient dye sensitized solar cells. Materials Letters, 265, 127407.

Stathatos, E., Lianos, P., Zakeeruddin, S. M., Liska, P., & Grätzel, M. (2003). A Quasi-Solid-State Dye-Sensitized Solar Cell Based on a Sol−Gel Nanocomposite Electrolyte Containing Ionic Liquid. Chemistry of Materials, 15(9), 1825-1829.

Sundriyal, S., Shrivastav, V., Sharma, M., Mishra, S., & Deep, A. (2019). Significantly enhanced performance of rGO/TiO2 nanosheet composite electrodes based 1.8 V symmetrical supercapacitor with use of redox additive electrolyte. Journal of Alloys and Compounds, 790, 377-387.

Tobin, L. L., O’Reilly, T., Zerulla, D., & Sheridan, J. T. (2011). Characterising dye-sensitised solar cells. Optik - International Journal for Light and Electron Optics, 122(14), 1225-1230.

Wang, Q., Moser, J.-E., & Grätzel, M. (2005a). Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B, 109(31), 14945-14953.

Wang, Q., Moser, J.-E., & Grätzel, M. (2005b). Electrochemical Impedance Spectroscopic Analysis of Dye-Sensitized Solar Cells. J. Phys. Chem B, 109(31), 14945-14953.

Wu, J., Lan, Z., Wang, D., Hao, S., Lin, J., Huang, Y., . . . Sato, T. (2006). Gel polymer electrolyte based on poly(acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell. Electrochimica Acta, 51(20), 4243-4249.

Yuliza, E., Saehana, S. R., D. Y., Rosi, M., Khairurrijal, & Mikrajuddin, A. (2013). Enhancement Performance of Dye-Sensitized Solar Cells from Black Rice as Dye and Black Ink as Counter Electrode with Inserting Copper on the Space between TiO2 Particle’s by Using Electroplating Method. Materials Science Forum, 737, 85-92.

Zhou, H., Wu, L., Gao, Y., & Ma, T. (2011). Dye-sensitized solar cells using 20 natural dyes as sensitizers. Journal of Photochemistry and Photobiology A: Chemistry, 219(2–3), 188-194.




How to Cite

Prima, E. C., Utami, M. P., Setiawan, A., & Suhendi, E. (2022). Review Penggunaan Reduced Graphene Oxide/TiO2 sebagai Fotoelektrode pada Dye-Sensitized Solar Cell. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 6(1), 1–9.



Abstract Views: 900 | File Views: 1184