Validasi Metode Analisis Konsentrasi Larutan Kopi berdasarkan Spektroskopi Absorpsi Cahaya

Authors

  • Nurullina Fajri Program Studi Pendidikan IPA, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Eka Cahya Prima Program Studi Pendidikan IPA, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Riandi Riandi Program Studi Pendidikan IPA, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia
  • Siti Sriyati Program Studi Pendidikan IPA, Fakultas Pendidikan Matematika dan Ilmu Pengetahuan Alam, Universitas Pendidikan Indonesia, Bandung 40154, Indonesia

DOI:

https://doi.org/10.30599/jipfri.v8i1.2101

Keywords:

concentration of coffee, method validation, absorbance, spectroscopy

Abstract

This research aims to validate the method of analyzing the concentration of coffee solution by measuring light absorbance using simple spectrophotometry. Spectrophotometry is a technique that utilizes the interaction between visible light and electromagnetic waves on a substance. Measurement of the absorbency of the coffee was carried out by making five samples of coffee solution with different concentrations, namely 100 ppm, 160 ppm, 200 ppm, 350 ppm and 400 ppm. Absorbance measurements were carried out at visible light wavelengths (380 750 nm). The validation of the coffee has good linearity with a correlation coefficient of 0.9818; 0.9902 and 0.9788. The average precision value for the three treatments was 0.0056% with a Limit of Detection (LOD) and Limit of Quantitation (LOQ) of 115 ppm and 383.33 ppm for (  405 nm 10); 44 ppm and 146.67 ppm for ( 532 nm 10); 70.2 ppm and 234 ppm for (  650 nm 10). This indicates that the validation result of absorbance analytical method of the coffee, using simple spectrophotometry is not different from the standard measurement.

Downloads

Download data is not yet available.

References

Albert, D. R., Todt, M. A., & Davis, H. F. (2012). A low-cost quantitative absorption spectrophotometer. Journal of Chemical Education, 89(11), 1432–1435. https://doi.org/dx.doi.org/10.1021/ed200829d

Angela, Alcázar. , J. M. Jurado. , M. M. Jesús. , P. Fernando. , G. A. G. (2005). Enzymatic-spectrophotometric determination of sucrose in coffee beans´Angela. Talanta, 67, 760–766. https://doi.org/10.1016/j.talanta.2005.04.005´A

Astuti, P., Idiawati, N., & Destiarti, L. (2016). Validasi Metode Pengukuran Kadar Asam Humat Hasil Ekstraksi Kalium Hidroksida dengan Spektrofotometri Ultraviolet. Jurnal Kimia Khatulistiwa, 5(2), 69–77.

Barazandeh, A., Najafpour, G. D., Alihosseini, A., Kazemi, S., & Akhondi, E. (2021). Spectrophotometric determination of naproxen using chitosan capped silver nanoparticles in pharmaceutical formulation. International Journal of Engineering, Transactions A: Basics, 34(7), 1576–1585. https://doi.org/10.5829/ije.2021.34.07a.03

Belay, A., & Gholap, A. v. (2009). Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy. African Journal of Pure and Applied Chemistry, 3(11), 234–240. http://www.academicjournals.org/ajpac

González-Morales, D., Valencia, A., Díaz-Nuñez, A., Fuentes-Estrada, M., López-Santos, O., & García-Beltrán, O. (2020). Development of a low-cost UV-Vis spectrophotometer and its application for the detection of mercuric ions assisted by chemosensors. Sensors (Switzerland), 20(3), 1–16. https://doi.org/10.3390/s20030906

Hespanhol, M. C., Pasquini, C., & Maldaner, A. O. (2019). Evaluation of a low-cost portable near-infrared spectrophotometer for in situ cocaine profiling. Talanta, 200, 553–561. https://doi.org/https://doi.org/10.1016/j.talanta.2019.03.091

Hosker, B. S. (2018). Demonstrating Principles of Spectrophotometry by Constructing a Simple, Low-Cost, Functional Spectrophotometer Utilizing the Light Sensor on a Smartphone. Journal of Chemical Education, 95(1), 178–181. https://doi.org/10.1021/acs.jchemed.7b00548

Kesia Maramis, R., Citraningtyas, G., & Wehantouw, F. (2013). Analisis Kafein dalam Kopi Bubuk di Kota Manado menggunakan Spektrofotometri UV-Vis. Jurnal Ilmiah Farmasi, 2(04), 2302–2493.

Laganovska, K., Zolotarjovs, A., Vázquez, M., Mc Donnell, K., Liepins, J., Ben-Yoav, H., Karitans, V., & Smits, K. (2020). Portable low-cost open-source wireless spectrophotometer for fast and reliable measurements. HardwareX, 1–12. https://doi.org/10.17605/OSF.IO/RBFSE

Listiaji, P., & Suparta, G. B. (2020). Low-cost imaging spectrophotometer system for absorbance measurement. International Conference on Mathematics, Science, and Education (ICMSE), 1567(4), 1–6. https://doi.org/10.1088/1742-6596/1567/4/042093

Lokare, O. R., Ji, P., Wadekar, S., Dutt, G., & Vidic, R. D. (2019). Concentration polarization in membrane distillation: I. Development of a laser-based spectrophotometric method for in-situ characterization. Journal of Membrane Science, 581, 462–471. https://doi.org/https://doi.org/10.1016/j.memsci.2019.03.080

Md. Ashfaque E Alam, Md. R. I. and I. J. F. (2017). Development and Validation of a Low-cost Visible Light Spectrophotometer. International Conference on Advances in Electrical Engineering (ICAEE), 653–657.

Nethra, K., Shaik Mohammed, Z., Kavitha, J., Seetharaman, R., Kokilambigai, K. S., & Lakshmi, K. S. (2022). Development and Validation of Stability Indicating HPTLC Method for the Simultaneous Estimation of Tinidazole and Fluconazole and Its Applicability in Marketed Dosage Form. International Journal of Applied Pharmaceutics, 14(5), 153–160. https://doi.org/https://doi.org/10.22159/ijap.2022v14i5.44460

Syamdini, C. F. S., Muthiah, I. K., & Ainurofiq, A. (2022). Validation of UV spectrophotometric method for ketoprofen multicomponent crystals with malic acid and tartaric acid. Journal of Physics: Conference Series, 2190(1), 1–7. https://doi.org/10.1088/1742-6596/2190/1/012034

Vanderveen, J. R., Martin, B., & Ooms, K. J. (2013). Developing tools for undergraduate spectroscopy: An inexpensive visible light spectrometer. Journal of Chemical Education, 90(7), 894–899. https://doi.org/10.1021/ed300396x

Yang, X. D., Gong, B., Chen, W., Chen, J. J., Qian, C., Lu, R., Min, Y., Jiang, T., Li, L., & Yu, H. Q. (2024). In Situ Quantitative Monitoring of Adsorption from Aqueous Phase by UV–vis Spectroscopy: Implication for Understanding of Heterogeneous Processes. Advanced Science. https://doi.org/10.1002/advs.202402732

Downloads

Published

2024-08-20

How to Cite

Fajri, N., Prima, E. C., Riandi, R., & Sriyati, S. (2024). Validasi Metode Analisis Konsentrasi Larutan Kopi berdasarkan Spektroskopi Absorpsi Cahaya. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 8(1), 51–59. https://doi.org/10.30599/jipfri.v8i1.2101

Issue

Section

Articles
Abstract Views: 125 | File Views: 129