Studi Faktor Kualitas Resonansi Bunyi pada Pipa Organa Tertutup Menggunakan Panjang Efektif
DOI:
https://doi.org/10.30599/jipfri.v9i1.4186Keywords:
quality factor, effective length, sound resonance, closed pipe resonanceAbstract
This study aims to improve the accuracy of resonance analysis in closed pipe resonance through the measurement of quality factor (Q) and effective air column length. The method employed involves an automated system based on Arduino, equipped with an HC-SR04 sensor to measure distance and a KY-037 sensor to detect sound amplitude, integrated with Python-based data analysis for determining the resonance frequency. The measurement results show that the use of effective length with tube radius correction and improved frequency determination methods can reduce error from 1.33% to 0.24%, as well as decrease the standard deviation from 0.45 cm to 0.37 cm. Furthermore, quality factor analysis indicates an increase in the average value from 20 to 31, suggesting that the implemented resonance system and analysis method provide more accurate results, despite increased variability. Overall, the system successfully delivers more precise measurements in the analysis of resonance characteristics in closed organ pipes, particularly in relation to energy dissipation.
Downloads
References
Abdullah, M. (2016). FISIKA DASAR 1 (Vol. 1, Issue Maret). Institut Teknologi Bandung.
Adhikari, S. K. (2023). Study of Quality and Damping Factor at First and Second Resonance of Closed Organ Pipe. BMC Journal of Scientific Research, 6(1), 46–54. https://doi.org/10.3126/bmcjsr.v6i1.60953
Aulliyah, U. A., Hakim, M. R., & Dewi, S. (2023). Software Audacity Pada Alat Musik Seruling Bambu. Jurnal Fisika Sains Dan Aplikasinya, 8(2), 78–85.
Guo, H. (2012). A Simple Algorithm for Fitting a Gaussian Function. Streamlining Digital Signal Processing: A Tricks of the Trade Guidebook: Second Edition, September 2011, 297–305. https://doi.org/10.1002/9781118316948.ch31
Hellesund, S. (2019). Measuring the speed of sound in air using a smartphone and a cardboard tube. Physics Education, 54(3). https://doi.org/10.1088/1361-6552/ab0e21
Iskandar, F., & Pramudya, Y. (2024). A Comparative Study of Sound Resonance Using Arduino-Based Ultrasonic Sensors and Visualization Analysis with Python. Jurnal Materi Dan Pembelajaran Fisika, 14(2), 72–80. https://doi.org/10.20961/jmpf.v14i2.93454
Islam, M. R., Islam, M. T., Salaheldeen M, M., Bais, B., Almalki, S. H. A., Alsaif, H., & Islam, M. S. (2022). Metamaterial sensor based on rectangular enclosed adjacent triple circle split ring resonator with good quality factor for microwave sensing application. Scientific Reports, 12(1), 1–18. https://doi.org/10.1038/s41598-022-10729-4
Liu, J., Workie, T. B., Wu, T., Wu, Z., Gong, K., Bao, J., & Hashimoto, K. Y. (2020). Q-factor enhancement of thin-film piezoelectric-on-silicon mems resonator by phononic crystal-reflector composite structure. Micromachines, 11(12), 1–13. https://doi.org/10.3390/mi11121130
Pain, H. J. (2005). THE PHYSICS OF VIBRATIONS AND WAVES. In Discrete Mathematics (Sixth Edit). John Wiley & Sons. https://doi.org/10.1016/0012-365X(90)90006-4
Pastuchová, E., & Zákopčan, M. (2015). Comparison of algorithms for fitting a gaussian function used in testing smart sensors. Journal of Electrical Engineering, 66(3), 178–181. https://doi.org/10.2478/jee-2015-0029
Qi, X., Pérez, L. A., Alonso, M. I., & Mihi, A. (2024). High Q-Factor Plasmonic Surface Lattice Resonances in Colloidal Nanoparticle Arrays. ACS Applied Materials and Interfaces, 16(1), 1259–1267. https://doi.org/10.1021/acsami.3c08617
Reyes, D., Martínez, D., Mayorga, M., Heo, H., Walker, E., & Neogi, A. (2020). Optimization of the Spatial Configuration of Local Defects in Phononic Crystals for High Q Cavity. Frontiers in Mechanical Engineering, 6(December), 1–9. https://doi.org/10.3389/FMECH.2020.592787
Riazy, L., Däuber, S., Lange, S., Viezzer, D. S., Ott, S., Wiesemann, S., Blaszczyk, E., Mühlberg, F., Zange, L., & Schulz-Menger, J. (2023). Translating principles of quality control to cardiovascular magnetic resonance: assessing quantitative parameters of the left ventricle in a large cohort. Scientific Reports, 13(1), 1–10. https://doi.org/10.1038/s41598-023-29028-7
Sisniega, B., Gutiérrez, J., Muto, V., & García-Arribas, A. (2020). Improved determination of q quality factor and resonance frequency in sensors based on the magnetoelastic resonance through the fitting to analytical expressions. Materials, 13(21), 1–15. https://doi.org/10.3390/ma13214708
Streque, J., Camus, J., Laroche, T., Hage-Ali, S., M’Jahed, H., Rammal, M., Aubert, T., Djouadi, M. A., Ballandras, S., & Elmazria, O. (2020). Design and Characterization of High-Q SAW Resonators Based on the AlN/Sapphire Structure Intended for High-Temperature Wireless Sensor Applications. IEEE Sensors Journal, 20(13), 6985–6991. https://doi.org/10.1109/JSEN.2020.2978179
Suyatno, Indrawati, S., Pratiwi, A. N., & Prajitno, G. (2021). Evaluation of Acoustic parameters at the ITS Science Tower Auditorium as a Multi-function Room. Journal of Physics: Conference Series, 1951(1). https://doi.org/10.1088/1742-6596/1951/1/012038
Utami, R. I., Anggraini, F. W., Ningsi, S. W., Hanif, D. A., & Kurniawati, W. (2024). Pendalaman Materi Bunyi dan Cahaya (Studi Kasus Penerapan Bunyi dan Cahaya Dalam Kehidupan Sehari-hari). Konstanta: Jurnal Matematika Dan Ilmu Pengelatuan Alam, 2(1), 284–295. https://doi.org/10.59581/konstanta.v2i1.2410
Wei, Z., Hu, J., Li, Y., & Chen, J. (2022). Effect of Electrode Thickness on Quality Factor of Ring Electrode QCM Sensor. Sensors, 22(14), 1–7. https://doi.org/10.3390/s22145159
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Feri Iskandar, Yudhiakto Pramudya

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.