The Application of Non-Thermal Plasma and Electrocoagulation as Purifier of Liquid Waste in Home Industries
DOI:
https://doi.org/10.30599/jipfri.v6i1.992Keywords:
electrocoagulation, pH, non-thermal plasma, liquid wasteAbstract
This study aims to examine the decomposition method of liquid waste in the home industry, especially in the tofu industry, by using non-thermal plasma and electrocoagulant methods that are environmentally friendly and with low energy. In this study, the plasma method, electro-coagulant method, and a combination of both (electro-coagulant followed by plasma method and plasma followed by electro-coagulant method) were used to decompose liquid waste in the tofu industry. The results showed that non-thermal plasma followed by the electrocoagulation method was the most effective in reducing the T.D.S. value of 1983 ppm (the minimum value of the total control T.D.S. was around 2702 ppm), the minimum value of electrical conductivity (E.C.) was around 3967 (μs/cm), and also obtained a value of 3967 (μs/cm). pH 7.0. Based on the research results, non-thermal plasma combined with the electrocoagulant method can be applied to more optimally decompose liquid waste, especially in the tofu industry. The combination method of plasma and electrocoagulation to decompose the tofu industrial wastewater, which is environmentally friendly, is the novelty of this research
Downloads
References
Amril, H. (2015). Teknologi Plasma untuk Pengolahan Air, Bandung: Institut Teknologi Bandung https://www.researchgate.net/publication/287699345Teknologi_Plasma_untuk_Pengolahan_Air. https://www.researchgate.net/publication/287699345_Teknologi_Plasma_untuk_Pengolahan_Air (diakses pada 2 Januari 2020)
Bilinska, L., Gmurek, M., & Ledakowicz, S. (2015). Application of advanced oxidation technologies for decolorization and mineralization of textile wastewaters. Journal of Advanced Oxidation Technologies, 18(2), 185-194.
Bilińska, L., Gmurek, M., & Ledakowicz, S. (2017). Textile wastewater treatment by AOPs for brine reuse. Process Safety and Environmental Protection, 109, 420-428. https://doi.org/10.1016/j.psep.2017.04.019
Chafi, M., Gourich, B., Essadki, A. H., Vial, C., & Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes with chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285-292. https://doi.org/10.1016/j.desal.2011.08.004
Darmawanti, T., Suhartana, S., & Widodo, D. S. (2010). Pengolahan Limbah Cair Industri Batik dengan Metoda Elektrokoagulasi Menggunakan Besi Bekas Sebagai Elektroda. Jurnal Kimia Sains dan Aplikasi, 13(1), 18-24. https://doi.org/10.14710/jksa.13.1.18-24
Dors, M., Metel, E., & Mizeraczyk, J. (2007). Phenol degradation in water by pulsed streamer corona discharge and fenton reaction. Int. J. Plasma Environ. Sci. Technol, 1(1), 76-81.
Fachrurozi, M., Utami, L. B., & Suryani, D. Pengaruh Variasi Biomassa Pistia Stratiotes L. Terhadap Penurunan Kadar Bod, Cod, Dan Tss Limbah Cair Tahu Di Dusun Klero Sleman YOGYAKARTA. Kes Mas: Jurnal Fakultas Kesehatan Masyarakat Universitas Ahmad Daulan, 4(1), 1-15. http://dx.doi.org/10.12928/kesmas.v4i1.1100
Gharagozalian, M., Dorranian, D., & Ghoranneviss, M. (2017). Water treatment by the AC gliding arc air plasma. Journal of Theoretical and Applied Physics, 11(3), 171-180. https://doi.org/10.1007/s40094-017-0254-z
Hernaningsih, T. (2017). Tinjauan Teknologi Pengolahan Air Limbah Industri dengan Proses elektrokoagulasi. Jurnal Rekayasa Lingkungan, 9 (1), 31-46
Kalliala, E., & Talvenmaa, P. (2000). Environmental profile of textile wet processing in Finland. Journal of Cleaner Production, 8(2), 143-154. https://doi.org/10.1016/S0959-6526(99)00313-3
Khlyustova, A., Khomyakova, N., Sirotkin, N., & Marfin, Y. (2016). The effect of pH on OH radical generation in aqueous solutions by atmospheric pressure glow discharge. Plasma Chemistry and Plasma Processing, 36(5), 1229-1238. https://doi.org/10.1007/s11090-016-9732-3
Kim, K. S., Yang, C. S., & Mok, Y. S. (2013). Degradation of veterinary antibiotics by dielectric barrier discharge plasma. Chemical engineering journal, 219, 19-27. https://doi.org/10.1016/j.cej.2012.12.079
Kobya, M., Can, O. T., & Bayramoglu, M. (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. Journal of hazardous materials, 100(1-3), 163-178. https://doi.org/10.1016/S0304-3894(03)00102-X
Locke, B. R., Sato, M., Sunka, P., Hoffmann, M. R., & Chang, J. S. (2006). Electrohydraulic discharge and nonthermal plasma for water treatment. Industrial & engineering chemistry research, 45(3), 882-905. https://doi.org/10.1021/ie050981u
Lukes, P., & Locke, B. R. (2005). Plasmachemical oxidation processes in a hybrid gas–liquid electrical discharge reactor. Journal of Physics D: Applied Physics, 38(22), 4074. https://doi.org/10.1088/0022-3727/38/22/010
Murti, W., & Putra, V. G. V. (2020). Studi pengaruh perlakuan plasma terhadap sifat material antibakteri kain kassa menggunakan minyak atsiri (Zingiber officinale rosc). Jurnal Teori dan Aplikasi Fisika, 8(1), 69-76. http://dx.doi.org/10.23960%2Fjtaf.v8i1.2432
Putra, V. G. V., & Wijayono, A. (2019, December). Suatu studi awal modifikasi sifat pembasahan pada permukaan kain tekstil poliester 100% menggunakan teknologi plasma pijar korona. In Prosiding Seminar Nasional Fisika (E-Journal) (Vol. 8, pp. SNF2019-PA). https://doi.org/10.21009/03.SNF2019.02.PA.03
Putra, V.G.V., Mohamad, J & Yusuf, Y, (2020), Application of Plasma Waves in Reducing Chemical Oxygen Demand (C.O.D.) Levels in Batik Waste Via Corona Plasma and Electrocoagulation with Variation Methods, Jurnal Ilmu Fisika(J.I.F.), 12(1), 1–8.
Sakthisharmila, P. N. P. P., Palanisamy, P. N., & Manikandan, P. (2018). Removal of benzidine based textile dye using different metal hydroxides generated in situ electrochemical treatment-A comparative study. Journal of Cleaner Production, 172, 2206-2215. https://doi.org/10.1016/j.jclepro.2017.11.192
Sato, K., & Yasuoka, K. (2008). Pulsed discharge development in oxygen, argon, and helium bubbles in water. IEEE transactions on plasma science, 36(4), 1144-1145. https://doi.org/10.1109/TPS.2008.924619
Şengil, İ. A., & Özacar, M. (2009). The decolorization of CI Reactive Black 5 in aqueous solution by electrocoagulation using sacrificial iron electrodes. Journal of hazardous materials, 161(2-3), 1369-1376. https://doi.org/10.1016/j.jhazmat.2008.04.100
Shang, K., Wang, X., Li, J., Wang, H., Jiang, N., Lu, N., & Wu, Y. (2017). Effect of persulfate on the degradation of acid orange 7 (AO7) by dielectric barrier discharge plasma. Topics in Catalysis, 60(12), 973-979. https://doi.org/10.1007/s11244-017-0762-8
Shengxia, D., Xia, L., Yanan, M., Yuedong, M., Alsaedi Ahmed, Hayat Tasawar and Li Jiaxing (2017) Plasma surface modification of materials and their entrapment of water contaminant: A review. Plasma Processes and Polymers, 14(9), 1600218. https://doi.org/10.1002/ppap.201600218
Sunka, P., Babický, V., Clupek, M., Lukes, P., Simek, M., Schmidt, J., & Cernak, M. (1999). Generation of chemically active species by electrical discharges in water. Plasma Sources Science and Technology, 8(2), 258. https://doi.org/10.1088/0963-0252/8/2/006
Zongo, I., Maiga, A.H., Wéthé, J., dkk (2009). Electrocoagulation for the treatment of textile wastewaters with Al or Fe electrodes: Compared variations of C.O.D. levels, turbidity, and absorbance, J. Hazard. Mater. 169, 70–76. https://doi.org/10.1016/j.jhazmat.2009.03.072