Pembuatan Sensor Suhu Berbahan Kawat Kumparan dengan Indikator Intensitas Cahaya


  • Moh. Toifur Toifur Universitas Ahmad Dahlan
  • Zulfana Dina MTs Al Huda Al Ilahiyah
  • Okimustava Universitas Ahmad Dahlan



temperature sensor, copper, iron, nichrome, light intensity


This study aims to make a temperature sensor using coil wire with an indicator in the form of light intensity and to test the sensitivity of iron, copper, and nichrome wires in responding to changes in temperature. The temperature sensor unit consists of a coil of 250 turns, connected in series with a 3V/32W DC lamp and a 3 volt constant voltage source. As a medium, a room illuminated by a 100 watt lamp was used, where the lamp voltage is adjusted from 50 V to 150 V via slide regulator to produce a medium temperature from 30°C to 100°C, while for the indicator lamps, the light intensity of the lamp is measured with a luxmeter UT383. The results showed that there was a significant relationship between changes in medium temperature to light intensity for copper and iron coils while the nichrome coil is not. From the linear regression on temperature and light intensity data, the sensor sensitivity of copper and iron wire coils is (1.34 ±0.06) lux/°C and (7.33 ± 0.43) lux/°C, respectively. From these values can be known that the temperature sensor of the iron coil is more sensitive than copper, but the copper coil is more precise in indicating temperature than the iron coil. From this research, a temperature sensor unit made of copper and iron coils has been successfully made to measure the temperature of the medium from 30°C to 100°C using a light intensity indicator.


Download data is not yet available.


Aljubouri, A. A., Faisal, A. D., & Khalef, W. K. (2018). Fabrication of temperature sensor based on copper oxide nanowires grown on titanium coated glass substrate. Materials Science-Poland, 36(3), 460–468.

Amin, A. (2018) Monitoring Water Level Control Berbasis Arduino Uno Menggunakan LCD LM016L. Jurnal EEICT (Electric, Electronic, Instrumentation, Control, Telecommunication), 1(1): 45.

Amin, Rizaldi, M. A., Neforawati, I., (2021). Implementation Of Automatic Door System Based On Body Temperature Using Arduino Uno And Nodemcu V3, Journal Of Information Technology And Its Utilization, 4(2), 51-55.

Chybowski, L., Gawdzińska, K. and Wiśnicki, B. (2016). Qualitative importance measures of systems components – a new approach and its applications”. Management Systems in Production Engineering, 24 (4), 237-246.

Das, S., & Akhtar, J. (2014). Comparative Study on Temperature Coefficient of Resistance (TCR) of the E-beam and Sputter Deposited Nichrome Thin Film for Precise Temperature Control of Microheater for MEMS Gas Sensor. Environmental Science and Engineering, 495–497.

Endra, R. Y., Cucus, A., Affandi, F. N., & Bintang, S. M. (2019). Model Smart Room Dengan Menggunakan Mikrokontroler Arduino Untuk Efisiensi Sumber Daya. Explore – Jurnal Sistem Informasi dan Telematika.10(1), 1-9.

Ghaly, S.M.A. (2019). LabVIEW Based Implementation of Resistive Temperature Detector Linearization Techniques, Engineering, Technology & Applied Science Research, 9(4), 4530-4533.

Hariyanto, M.W., Hendrawan, A.H., Ritzkal. (2020). Monitoring the Environmental Temperature Using Arduino and Telegram, Journal of Robotics and Control (JRC), 1(3), 96-101.

Hasibuan, A., Kartika, Qodri, A., Isa, M. (2021). Temperature Monitoring System using Arduino Uno and Smartphone Application, Bulletin of Computer Science and Electrical Engineering, 2(2), 46~55.

Hwang, J.S., Kim, S.Y., Kim, Y. S., Song, H. J., Park, C. Y., Kim, J. D. (2015). Implementation of PCB-Based PCR Chip Using Double-Sided Tape, International Journal of Control and Automation, Vol.8, 117.

Meijer, G. C. M. (n.d.). Smart Temperature Sensors and Temperature-Sensor Systems. Smart Sensor Systems, 185–223.

Mowade, S. M. , Katre, A., Nandanwar, A., Singh, A. , Choudhary, A., Gaydhane, A. (2022). Automatic Door Control System with Body Temperature Sensor, International Journal for Research in Applied Science & Engineering Technology (IJRASET) 10(4).

P. Beneš, J. Chlebný, J. Král, J. Langer and M. Martinásková. (2014). Automatizace a automatizační technika 3 – Prostředky automatizační techniky. Brno: Computer Press.

Park, C.-Y., Kim, J.-D., Ku, J.-H., Kim, Y.-S., Song, H.-J., Kim, J.. (2012). Printed Circuit Board-Based Polymerase Chain Reaction Chip, Sensor Letters, 10, 1197-1202.

Sang-Yoon Kim, Jong-Dae Kim, Yu-Seop Kim, Hye-Jeong Song, and Chan-Young Park, Resistance Temperature Detector Sensor with a Copper Pattern on the Printed Circuit Board, International Journal of Control and Automation Vol.8, No.8 (2015),67-74.

Sen, S.K., Pan, T.K., Ghosa, P. (2011). An Improved Lead Wire Compensation Technique for Conventional Four Wire Resistance Temperature Detectors (RTDs), Measurements, 44, 842-846.

Singgih, S., Toifur, M., Suryandari.(2020). Experimental Design in Constructing Low Temperature Sensor Based on Resistance Temperature Detector (RTD), Indonesian Journal of Science and Education, (2), 99 -110.

Škultéty, E., Pivarčiová, E., Karrach, L., (2018). The comparing of The Selected Temperature Sensors Compatible With The Arduino Platform, Management Systems in Production Engineering, 2018, 26(3), 168-171. DOI: 10.1515/mspe-2018-0027

Toifur, M., Jaladri, E.A., Kurniasari, E., Latifah, Y., Taufiqurrahman, M. (2022). Magnetodeposited Nickel on Cu Substrate with the Angle Variation of Magnetic Field, Indonesian Review of Physics (IRiP) 5 (1), 1-7.

Yannan, D., Bin, R., Longxian, L., Xiaoying,T., Xiaolong, X., Weiping, Z., Weiping, O. (2019), Effect of High Temperature on Mechanical Properties of 13MnNiMoR, IOP Conf. Series: Earth and Environmental Science 330 (042047), 1-5




How to Cite

Toifur, M. T., Dina , Z., & Okimustava. (2022). Pembuatan Sensor Suhu Berbahan Kawat Kumparan dengan Indikator Intensitas Cahaya. JIPFRI (Jurnal Inovasi Pendidikan Fisika Dan Riset Ilmiah), 6(2), 72–78.
Abstract Views: 32 | File Views: 37