The Ability Of Mathematical Representation On Junior High School Students In Rectangular And Triangle Based On Gender

Authors

  • Annisa Nur Azizah Universitas Nurul Huda
  • Tri Atmojo Kusmayadi Universitas Sebelas Maret
  • Laila Fitriana Universitas Sebelas Maret
  • Claireza Nataliliana Universitas Muhammadiyah Surakarta
  • Beny Hermansyah Universitas Nurul Huda

DOI:

https://doi.org/10.30599/trigonometri.v1i1.3258

Keywords:

Representation, ability of mathematics, gender, rectangular, triangle, Representation, ability of mathematics, gender, rectangular, triangle

Abstract

The ability of representation mathematical is an ability to express or model the mathematical idea into other forms such as words, pictures, and symbols. A study on the ability of mathematics representation is required for the students; therefore, they can express their idea easily by interpreting their thought relating to mathematics problems. This research is a descriptive qualitative method which aimed to find out the description of student' ability of the mathematical representation on rectangular and triangle based on gender. The subjects of this research are 26 students of eight grades consisted of 11 female students and 15 male students. The technique of collecting data was done by using the test method and interview. The test instrument used is 6 essay tests. The data analysis technique is by analyzing the results of the test data. The research result showed that students' mathematical representation ability are categorized well enough. From the results of the data obtained, it can be concluded that the ability of mathematical representation for male students is evenly distributed because there are results for each category. As for the female students, the average has a high mathematical representation ability

Downloads

Download data is not yet available.

References

Abdullah, A., & Zakaria, E. (2013). The Effect of Van Hiele's Phases of Learning Geometry Students' Degree of Acquisition of Van Hiele Levels. Procedia, 251-266.

Abu, M. S., Ali, M. B., & Hock, T. T. (2012). Assisting Primary School Children to Progress through Their Van Hiele’s Levels of Geometry Thinking using Google SketchUp. Procedia - Social and Behavioral Sciences, 75-84.

Adolphus, T. (2011). Problems of Teaching and Learning of Geometry in Secondary Schools in Rivers State, Nigeria. International Journal of Emerging Sciences, 143-152.

Andini, S., Fitriana, L., & Budiyono . (2018). Elementary school students visual spatial comprehension based on van Hiele Theory: the case in Madiun, East Java, Indonesia. International Conference on Mathematics, Science and Education 2017 (ICMSE2017) (pp. 1-6). Semarang: IOP Publishing Ltd.

Armadan , Somakim, & Indaryanti . (2017). Kemampuan representasi matematis siswa pada pembelajaran berbasis teori Van Hiele di materi segiempat kelas VII SMP Negeri 1 Indralaya Utara. Jurnal Elemen.

Cheng, P. (2016). What Constitutes an Effective Representation? Diagrammatic Representation and Inference. Switzerland: Springer International Publishing.

David, M., Tomaz , V., & Ferreira , M. (2014). ZDM Mathematics Educational, 95-107.

Djaali , & Muljono , P. (2008). Pengukuran dalam Bidang Pendidikan. Jakarta: Grasindo.

Friedman , H. S., & Schustack, M. W. (2008). Kepribadian Teori Klasik dan Riset: Modern Jilid 1. Jakarta: Erlangga.

Guler, G., & Ciltas, A. (2011). The visual representation usage levels of mathematics teachers and students in solving verbal problems. International Journal of Humanities and Social Science, 145-154.

Handayani, T., & Sugiarti. (2017). Konsep dan Teknik Penelitian Gender. Malang: PMM Press.

Hardianti, D., Priatna, N., & Priatna , B. A. (2017). Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model. International Conference on Mathematics and Science Education (ICMScE) (pp. 1-7). Bandung: IOP Publishing.

Kartini. (2009). PERANAN REPRESENTASI DALAM PEMBELAJARAN MATEMATIKA. Seminar Nasional Matematika dan Pendidikan Matematika (pp. 361-372). Yogyakarta: Jurusan Pendidikan Matematika FMIPA UNY.

Kemendikbud. (2015). Panduan Penilaian untuk Sekolah Menengah Pertama SMP. Jakarta: Kemendkbud.

Kilpatrick, J., Swafford , J., & Findell , B. (2001). Adding It Up Helping Children Learn Mathematics. Washington DC: National Academy Pres.

Ma, H.-L., Lee, D.-C., & Lin, S.-H. (2015). A Study of Van Hiele of Geometric Thinking among 1st through 6th Graders. Eurasia Journal of Mathematics, Science and Technology Education, 1181-1196.

Mudzakir, H. (2006). Strategi Pembelajaran “Think-Talk-Write” untuk Meningkatkan Kemampuan Representasi Matematika Beragam Siswa SM. Bandung: UPI Bandung.

Musdalifah, A. (2015). Profil Kemampuan Spasial dalam Menyelesaikan Masalah Geometri Siswa yang Memiliki Kecerdasan Logis Matematis Tinggi ditinjau dari Perbedaan Gender. Jurnal Daya Matematis.

NCTM. (2000). Principles and standards for school mathematics. Reston: VA NCTM.

Nur'aini, M. (2014). Electron Jurnal Learn Math.

Santrock , J. W. (2010). Psikologi Pendidikan. Jakarta: PT Fajar Interpratama Offset.

Sariyasa. (2016). Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry. The 3rd International Conference on Mathematics, Science and Education (pp. 1-5). Surakarta: IOP Conf. Series: Journal of Physics.

Siregar. (2010). Statistika Deskriptif untuk Penelitian. Jakarta: Rajawali Pers.

Suherman, E. (2001). Strategi Pembelajaran Matematika Kontemporer (Bandung: UPIJICA). Bandung: UPIJICA.

Utami, C., Mardiyana, & Triyanto. (2019). Profile of students' mathematical representation ability in solving geometry problems. ICEGE (pp. 1-7). Jember: IOP Publishing.

Yıldız, C., Aydın, M., & Köğce, D. (2009). Comparing the old and new 6th - 8th grade mathematics curricula in terms of Van Hiele understanding levels for geometry. Procedia - Social and Behavioral Sciences, 731-736.

Downloads

Published

2024-01-23

How to Cite

Azizah, A. N., Kusmayadi, T. A., Fitriana, L., Nataliliana, C., & Hermansyah, B. (2024). The Ability Of Mathematical Representation On Junior High School Students In Rectangular And Triangle Based On Gender. Trigonometri: Jurnal Matematika, 1(1), 39–49. https://doi.org/10.30599/trigonometri.v1i1.3258
Abstract Views: 43 | File Views: 31

Most read articles by the same author(s)