Efektivitas Program Pembelajaran Menggunakan Model Pembelajaran ExPRession untuk Meningkatkan Systems Thinking Skills Siswa
DOI:
https://doi.org/10.30599/jti.v16i2.3636Keywords:
efektivitas, ExPRession, systems thinking skillsAbstract
Penelitian ini mendeskripsikan efektivitas program pembelajaran menggunakan Model Pembelajaran ExPRession untuk meningkatkan keterampilan sistem berpikir siswa pada materi interferensi cahaya. Sampel penelitian terdiri dari siswa kelas XI MIPA 1 dan XI MIPA 2 dari salah satu SMA di Lampung Timur. Desain penelitian yang digunakan adalah Non-Equivalent Pretest-Posttest Control Group Design. Teknik pengumpulan data menggunakan teknik tes. Instrumen tes berupa 7 soal esai yang mengakomodasi tujuh indikator kemampuan berpikir sistem, yaitu: 1) mengeksplorasi berbagai sudut pandang; 2) mempertimbangkan permasalahan secara tepat; 3) menetapkan batasan; 4) unsur pembeda dan pengukur; 5) mengidentifikasi dan mengkarakterisasi hubungan; 6) mengidentifikasi dan mengkarakterisasi umpan balik; 7) menjelaskan dan memprediksi perilaku sistem. Teknik analisis data menggunakan data deskriptif dan parametrik dengan menggunakan Independent Sample T-Test dan N-gain. Hasil Uji Independent Sample T-Test menunjukkan bahwa Sig. (2-tailed) posttest 0,001 kurang dari 0,05 yang berarti terdapat perbedaan yang signifikan rata-rata skor keterampilan berpikir sistem siswa pada kelas eksperimen dan kontrol setelah diberikan perlakuan. Peningkatan keterampilan berpikir sistem siswa pada kelas eksperimen yang melaksanakan program pembelajaran dengan model Pembelajaran ExPRession sebesar 0,6 termasuk dalam kategori sedang, lebih signifikan dibandingkan dengan kelas kontrol dengan pembelajaran konvensional yaitu sebesar 0,2 dengan kategori rendah.
Downloads
References
Adel, A., Dayan, J. (2021). Towards an intelligent blended system of learning activities model for New Zealand institutions: an investigative approach. Humanit Soc Sci Commun, 8(1), 1–14.
Afandi, A., Sajidan, S., Akhyar, M., Suryani, N. (2019). Development frameworks of the Indonesian partnership 21st-century skills standards for prospective science teachers: A Delphi Study. Jurnal Pendidikan IPA Indonesia, 8(1), 89–100.
Ambrose, B. S., Shaffer, P. S., Steinberg, R. N., Mcdermott, L. C, Ambrose, B. S, Shaffer, P. S. (1999). An investigation of student understanding of single-slit diffraction and double-slit interference. American Journal of Physics, 67(2), 146-155.
Ashraf, A. (2020). Challenges and possibilities in teaching and learning of calculus: A case study of India. Journal for the Education of Gifted Young Scientists, 8(1), 407–33.
Aslan, S. (2015). Is learning by teaching effective in gaining 21st century skills? The views of pre-service science teachers. Educational Sciences: Theory & Practice, 15(6).
Aspridanel, A., Abdurrahman, A., Lengkana, D., Jalmo, T. (2022). STEM-Integrated Flipped Classroom in the Teacher’s Perspective: Could its Implementation in E-Module Improve System Thinking Ability?. Indonesian Journal of Science and Mathematics Education, 5(1), 43–52.
Asrizal, Amran, A., Ananda, A., Festiyed, F., Sumarmin, R. (2018). The development of integrated science instructional materials to improve students’ digital literacy in scientific approach. Jurnal Pendidikan IPA Indonesia, 7(4), 442–50.
Astra, I. M., Raihanati, R., Mujayanah, N. (2020). Development of electronic module using creative problem-solving model equipped with HOTS problems on the kinetic theory of gases material. Jurnal Penelitian & Pengembangan Pendidikan Fisika, 6(2), 181–94.
Ausubel, D. P., Fitzgerald, D. (1961). Chapter V: Meaningful Learning and Retention: Intrapersonal Cognitive Variables, 31(5), 500-510.
Baharuddin, D. (2022). Systemic Thinking Professional Teachers Learning Development. Jurnal Sinestesia, 12(1).
Banda, H. J, Nzabahimana, J. (2023). The impact of physics education technology (PhET) interactive simulation-based learning on motivation and academic achievement among malawian physics students. J Sci Educ Technol, 32(1), 127–41.
Barak, M. (2017). Science teacher education in the twenty-first century: A pedagogical framework for technology-integrated social constructivism. Res Sci Educ, 47, 283–303.
Bobek, E., Tversky, B. (2016). Creating visual explanations improves learning. Cogn Res Princ Implic, 1, 1–14.
Burdick, A., Willis, H. (2011). Digital learning, digital scholarship and design thinking. Des Stud, 32(6), 546–56.
Calmer, J. M. (2019). Teaching Physics within a Next Generation Science Standards Perspective. Pedagogical Research, 4(4), 1–6.
Can, H. (2020). Implementation Of Systems Thinking Skills Module For The Context Of Energy. Dissertation.
Cho, J., Baek, W. (2019). Identifying factors affecting the quality of teaching in basic science education: Physics, biological sciences, mathematics, and chemistry. Sustainability, 11(14), 3958.
Chrestella, D., Haka, N. B., Supriyadi, S. (2021). Analisis Kemampuan Berpikir Kritis dan Self Regulation Peserta Didik melalui Pembelajaran Menggunakan Model Multipel Representasi. Jurnal Bio Educatio. 6(2), 27-34.
Docktor, J. L, Mestre, J. P. (2014). Synthesis of discipline-based education research in physics. Physical Review Special Topics-Physics Education Research, 10(2), 020119.
Doleck, T., Bazelais, P., Lemay, D. J, Saxena, A., Basnet, R. B. (2017). Algorithmic thinking, cooperativity, creativity, critical thinking, and problem solving: exploring the relationship between computational thinking skills and academic performance. Journal of Computers in Education, 4, 355–69.
Furtak, E. M., Penuel, W. R. (2019). Coming to terms: Addressing the persistence of “hands‐on” and other reform terminology in the era of science as practice. Sci Educ, 103(1), 167–86.
Geller, B. D., Turpen, C., Crouch, C. H. (2018). Sources of student engagement in Introductory Physics for Life Sciences. Phys Rev Phys Educ Res, 14(1), 10118.
Gleason, N. W. (2018). Higher Education in the Era of the Fourth Industrial Revolution. Higher Education in the Era of the Fourth Industrial Revolution. Springer Singapore, 1–229 p.
Gunawan, G., Harjono, A., Herayanti, L., Husein, S. (2019). Problem-based learning approach with supported interactive multimedia in physics course: Its effects on critical thinking disposition. Journal for the Education of Gifted Young Scientists, 7(4),1075–89.
Gurr, D., Longmuir, F., Reed, C. (2020). Creating successful and unique schools: leadership, context and systems thinking perspectives. Journal of Educational Administration, 59(1), 59-76.
Hake, R. R. (1998). Interactive-engagement versus traditional methods: A six-thousand-student survey of mechanics test data for introductory physics courses. Am J Phys, 66(1), 64–74.
Häkkinen, P., Järvelä, S., Mäkitalo-Siegl, K., Ahonen, A., Näykki, P., Valtonen, T. (2017). Preparing teacher-students for twenty-first-century learning practices (PREP 21): a framework for enhancing collaborative problem-solving and strategic learning skills. Teachers and Teaching, 23(1), 25–41.
Haryanti, S. S, Herlina, K, Abdurrahman, A. (2023). The Learning Program Validity uo Using of The ExPRession Model to Stimulate Student’s System Thinking and Numeracy Skills. Momentum: Physics Educational Journal, 7(1), 164–77.
Herlina, K. (2020). Model Pembelajaran ExPRession untuk Membangun Model Mental dan Kemampuan Problem Solving. Yogyakarta: Graha Ilmu. 54 p.
Hikmawati, H., Kusmiyati, K., Sutrio, S., Kurniawan, E., Sakdiyah, H. (2018). Implementasi Metode Real Experiments dan Virtual Experiments Pada Pembelajaran Fisika di SMAN 1 Kediri. Jurnal Pendidikan Fisika dan Teknologi, 4(2), 185–91.
Hilpert, J. C., Marchand, G. C. (2018). Complex systems research in educational psychology: Aligning theory and method. Educ Psychol, 53(3), 185–202.
Hmelo-Silver, C. E. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems and designs for learning. The Journal of the Learning Sciences, 16(3), 307-331.
Hogan, K. (2000). Assessing students’ systems reasoning in ecology. J Biol Educ, 35(1), 22–8.
Indah Pratiwi, F. A., Herlina, K., Viyanti, V., Andra, D. (2023). Validation of ExPRession Learning Model-based E-Worksheet Assisted with Heyzine to Construct Computational Thinking Skill. Jurnal Ilmiah Pendidikan Fisika, 7(1), 120.
Kan’an, A. (2018). The Relationship between Jordanian Students’ 21st Century Skills (Cs21) and Academic Achievement in Science. Journal of Turkish Science Education, 15(2), 82–94.
Ke, L., Sadler, T. D., Zangori, L., Friedrichsen, P.J. (2021). Developing and using multiple models to promote scientific literacy in the context of socio-scientific issues. Sci Educ (Dordr), 30(3), 589–607.
Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., Van Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education. Phys Rev Phys Educ Res, 13(1), 010109.
Kubricht, J. R., Holyoak, K. J., Lu, H. (2017). Intuitive physics: Current research and controversies. Trends Cogn Sci, 21(10), 749–59.
Kusasi, M., Fahmi, F., Sanjaya, R. E, Riduan, M., Anjani, N. (2021). Feasibility of STEM-based basic chemistry teaching materials to improve students’ science literature in wetland context. Journal of Physics: Conference Series. IOP Publishing, p. 012022.
Limbong, N., Herlina, K., Maulina, H. (2023). Problem-Solving and Computational Thinking Practices: Lesson Learned from The Implementation of ExPRession Model. JIPF (Jurnal Ilmu Pendidikan Fisika), 8(1).
Lucas, B., Hanson, J. (2016). Thinking like an engineer: Using engineering habits of mind and signature pedagogies to redesign engineering education. International Association of Online Engineering, 6(2), 4-13.
Maknun, J. (2020). Implementation of Guided Inquiry Learning Model to Improve Understanding Physics Concepts and Critical Thinking Skill of Vocational High School Students. International Education Studies, 13(6), 117–30.
May, J. M, Barth-Cohen, L. A., Gerton, J. M., De Grandi, C., Adams, A. L. (2022). Student sensemaking about inconsistencies in a reform-based introductory physics lab. Phys Rev Phys Educ Res, 18(2), 020134.
Newman, M. J. (2005). Problem Based Learning: An introduction and overview of the key features of the approach. J Vet Med Educ, 32(1), 12–20.
Novitra, F., Festiyed, Yohandri, Asrizal. (2021). Development of Online-based Inquiry Learning Model to Improve 21st-Century Skills of Physics Students in Senior High School. Eurasia Journal of Mathematics, Science and Technology Education, 17(9), 1–20.
Nurdiansah, I., Islami, F. H., Nana, N. (2020). Penerapan Model POE2WE Yang Di Integrasikan dengan Bencana Tsunami Sebagai Upaya Pemahaman Konsep Fisika pada Materi Gelombang Berjalan dan Gelombang Stasioner Bagi Siswa Kelas XI SMA. EduFisika, 5(01), 16–22.
Nurse, M. S., Grant, W. J. (2020). I’ll see it when I believe it: Motivated numeracy in perceptions of climate change risk. Environ Commun, 14(2), 184–201.
Purwaningsih, E., Sari, S. P., Sari, A. M, Suryadi, A. (2020). The Effect of STEM-PjBL and Discovery Learning on Improving Students’ Problem-Solving Skills of Impulse and Momentum Topic. Jurnal Pendidikan IPA Indonesia, 9(4), 465–76.
Putranta, H., Jumadi, J. (2019). Physics teacher efforts of Islamic high school in Yogyakarta to minimize students’ anxiety when facing the assessment of physics learning outcomes. Journal for the Education of Gifted Young Scientists, 7(2), 119–36.
Ramdani, A., Jufri, A. W., Gunawan, G., Fahrurrozi, M., Yustiqvar, M. (2021). Analysis of Students’ Critical Thinking Skills in terms of Gender Using Science Teaching Materials Based on The 5E Learning Cycle Integrated with Local Wisdom. Jurnal Pendidikan IPA Indonesia, 10(2), 187–99.
Ratnasari, R., Barorah, S. N. (2022). Penerapan Model Inkuiri Terbimbing Pada Materi Gelombang Cahaya Untuk Meningkatkan Penguasaan Konsep Dan Keterampilan Sains Siswa Kelas XI SMAIT Putri Abu Hurairah Mataram. Jurnal Pengabdian Magister Pendidikan IPA, 5(2), 197–203.
Riski, W. Y. (2022). Pengembangan Media Pembelajaran Berbasis Android Bermuatan Kearifan Lokal pada Materi Gerak Di Masa New Normal Covid-19 Kelas VIII SMP Negeri 1 Ledo. Jurnal Inovasi Pendidikan dan Pengajaran (JIPP), 1(2), 96–105.
Scheel, A. M., Tiokhin, L., Isager, P. M., Lakens, D. (2021). Why hypothesis testers should spend less time testing hypotheses. Perspectives on Psychological Science, 16(4), 744–55.
Shurygin, V. Y, Krasnova, L. A. (2016). Electronic Learning Courses as a Means to Activate Students’ Independent Work in Studying Physics. International Journal of Environmental and Science Education, 11(8), 1743–51.
Stuntz, L. N, Debra, A., Lyneis, D. A, Richardson, G. P. (2001). The Future of System and Learner-Centered Learning in K-12 Education. Education (Chula Vista).
Suryawati, E., Osman, K. (2017). Contextual learning: Innovative approach towards the development of students’ scientific attitude and natural science performance. Eurasia Journal of mathematics, science and technology education, 14(1), 61–76.
Syahri, W., Yusnadar, Y. (2022). Pengembangan E-Book Materi Gas Ideal Berbasis Multipel Representasi Menggunakan 3D Pageflip. Journal of The Indonesian Society of Integrated Chemistry (On Progress), 14(1), 1–9.
Wang, J., Jou, M, Lv Y., Huang, C. C. (2018). An investigation on teaching performances of model-based flipping classroom for physics supported by modern teaching technologies. Comput Human Behav, 84, 36–48.
Wosilait, K., Heron, P.R., Shaffer, P.S., Mcdermott, L.C. (1999). Addressing student difficulties in applying a wave model to the interference and diffraction of light to the interference and diffraction of light. American Journal of Physics, 67(S1), S5-S15.
Zacharia, Z. C., Olympiou, G. (2011). Physical versus virtual manipulative experimentation in physics learning. Learn Instr. 21(3), 317–31.
Zambrano, R. J., Kirschner, F., Sweller, J., Kirschner, P. A. (2019). Effects of prior knowledge on collaborative and individual learning. Learn Instr, 63.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Ike Festiana, Septina Sri Haryanti, Kartini Herlina, A Abdurrahman, Munadhirotul Azizah
This work is licensed under a Creative Commons Attribution 4.0 International License.